2,787 research outputs found

    Quantum theory of photonic crystal polaritons

    Full text link
    We formulate a full quantum mechanical theory of the interaction between electromagnetic modes in photonic crystal slabs and quantum well excitons embedded in the photonic structure. We apply the formalism to a high index dielectric layer with a periodic patterning suspended in air. The strong coupling between electromagnetic modes lying above the cladding light line and exciton center of mass eigenfunctions manifests itself with the typical anticrossing behavior. The resulting band dispersion corresponds to the quasi-particles coming from the mixing of electromagnetic and material excitations, which we call photonic crystal polaritons. We compare the results obtained by using the quantum theory to variable angle reflectance spectra coming from a scattering matrix approach, and we find very good quantitative agreement.Comment: Proceedings of the "8th Conference on Optics of Excitons in Confined Systems" (OECS-8), 15-17 September 2003, Lecce (Italy

    Polariton Dispersion Law in Periodic Bragg and Near-Bragg Multiple Quantum Well Structures

    Full text link
    The structure of polariton spectrum is analyzed for periodic multiple quantum well structures with periods at or close to Bragg resonance condition at the wavelength of the exciton resonance. The results obtained used to discuss recent reflection and luminescent experiments by M. H\"{u}bner et al [Phys. Rev. Lett. {\bf 83}, 2841 (1999)] carried out with long multiple quantum well structures. It is argued that the discussion of quantum well structures with large number of wells is more appropriate in terms of normal modes of infinite periodic structures rather then in terms of super- and sub- radiant modes.Comment: replaced with a new version, an error in one of the equations is correcte

    Exciton polaritons in two-dimensional photonic crystals

    Full text link
    Experimental evidence of strong coupling between excitons confined in a quantum well and the photonic modes of a two-dimensional dielectric lattice is reported. Both resonant scattering and photoluminescence spectra at low temperature show the anticrossing of the polariton branches, fingerprint of strong coupling regime. The experiments are successfully interpreted in terms of a quantum theory of exciton-photon coupling in the investigated structure. These results show that the polariton dispersion can be tailored by properly varying the photonic crystal lattice parameter, which opens the possibility to obtain the generation of entangled photon pairs through polariton stimulated scattering.Comment: 5 pages, 4 figure

    ALMA imaging of SDP.81 - II. A pixelated reconstruction of the CO emission lines

    Get PDF
    We present a sub-100 pc-scale analysis of the CO molecular gas emission and kinematics of the gravitational lens system SDP.81 at redshift 3.042 using Atacama Large Millimetre/submillimetre Array (ALMA) science verification data and a visibility-plane lens reconstruction technique. We find clear evidence for an excitation dependent structure in the unlensed molecular gas distribution, with emission in CO (5-4) being significantly more diffuse and structured than in CO (8-7). The intrinsic line luminosity ratio is r_8-7/5-4 = 0.30 +/- 0.04, which is consistent with other low-excitation starbursts at z ~ 3. An analysis of the velocity fields shows evidence for a star-forming disk with multiple velocity components that is consistent with a merger/post-coalescence merger scenario, and a dynamical mass of M(< 1.56 kpc) = 1.6 +/- 0.6 x 10^10 M_sol . Source reconstructions from ALMA and the Hubble Space Telescope show that the stellar component is offset from the molecular gas and dust components. Together with Karl G. Jansky Very Large Array CO (1-0) data, they provide corroborative evidence for a complex ~2 kpc-scale starburst that is embedded within a larger ~15 kpc structure.Comment: MNRAS accepted, 6th July 201

    Self-tuned quantum dot gain in photonic crystal lasers

    Full text link
    We demonstrate that very few (1 to 3) quantum dots as a gain medium are sufficient to realize a photonic crystal laser based on a high-quality nanocavity. Photon correlation measurements show a transition from a thermal to a coherent light state proving that lasing action occurs at ultra-low thresholds. Observation of lasing is unexpected since the cavity mode is in general not resonant with the discrete quantum dot states and emission at those frequencies is suppressed. In this situation, the quasi-continuous quantum dot states become crucial since they provide an energy-transfer channel into the lasing mode, effectively leading to a self-tuned resonance for the gain medium.Comment: 4 pages, 4 figures, submitted to Phys. Re

    CO excitation in the Seyfert galaxy NGC7130

    Get PDF
    We present a coherent multi-band modelling of the CO Spectral Energy Distribution of the local Seyfert Galaxy NGC7130 to assess the impact of the AGN activity on the molecular gas. We take advantage of all the available data from X-ray to the sub-mm, including ALMA data. The high-resolution (~0.2") ALMA CO(6-5) data constrain the spatial extension of the CO emission down to ~70 pc scale. From the analysis of the archival CHANDRA and NuSTAR data, we infer the presence of a buried, Compton-thick AGN of moderate luminosity, L_2-10keV ~ 1.6x10^{43} ergs-1. We explore photodissociation and X-ray-dominated regions (PDRs and XDRs) models to reproduce the CO emission. We find that PDRs can reproduce the CO lines up to J~6, however, the higher rotational ladder requires the presence of a separate source of excitation. We consider X-ray heating by the AGN as a source of excitation, and find that it can reproduce the observed CO Spectral Energy Distribution. By adopting a composite PDR+XDR model, we derive molecular cloud properties. Our study clearly indicates the capabilities offered by current-generation of instruments to shed light on the properties of nearby galaxies adopting state-of-the art physical modelling.Comment: 5 pages, 3 figures, accepted for publication in MNRAS Letter

    Analisis Penerapan Sistem Manajemen Limbah Berdasarkan Sertifikasi Eco-hotel Di Sheraton Surabaya Hotel and Towers

    Full text link
    Sistem manajemen limbah menjadi hal yang perlu diperhatikan bagi pelaksana bisnis perhotelan. Sheraton Surabaya Hotel and Towers mendasarkan sistem manajemen limbah pada sertifikasi Eco-Hotel, yaitu sertifikasi yang didasarkan pada ISO 14001 tahun 2004 mengenai Standar Manajemen Lingkungan dan diaplikasikan pada bisnis dan operasional hotel. Dalam penelitian ini, penulis ingin mengetahui penerapan sistem manajemen limbah berdasarkan sertifikasi Eco-Hotel di Sheraton Surabaya Hotel and Towers. Penelitian ini merupakan penelitian kualitatif yang menggunakan wawancara, observasi, dokumentasi dan triangulasi sebagai teknik pengumpulan data. Hasil penelitian menunjukkan bahwa Sheraton Surabaya Hotel and Towers sudah melaksanakan lima syarat dari sertifikasi Eco-Hotel dengan baik, sedangkan enam syarat lainnya belum sepenuhnya terpenuhi

    ALMA imaging of SDP.81 - I. A pixelated reconstruction of the far-infrared continuum emission

    Get PDF
    We present a sub-50 pc-scale analysis of the gravitational lens system SDP.81 at redshift 3.042 using Atacama Large Millimetre/submillimetre Array (ALMA) science verification data. We model both the mass distribution of the gravitational lensing galaxy and the pixelated surface brightness distribution of the background source using a novel Bayesian technique that fits the data directly in visibility space. We find the 1 and 1.3 mm dust emission to be magnified by a factor of u_tot = 17.6+/-0.4, giving an intrinsic total star-formation rate of 315+/-60 M_sol/yr and a dust mass of 6.4+/-1.5*10^8 M_sol. The reconstructed dust emission is found to be non-uniform, but composed of multiple regions that are heated by both diffuse and strongly clumped star-formation. The highest surface brightness region is a ~1.9*0.7 kpc disk-like structure, whose small extent is consistent with a potential size-bias in gravitationally lensed starbursts. Although surrounded by extended star formation, with a density of 20-30+/-10 M_sol/yr/kpc^2, the disk contains three compact regions with densities that peak between 120-190+/-20 M_sol/yr/kpc^2. Such star-formation rate densities are below what is expected for Eddington-limited star-formation by a radiation pressure supported starburst. There is also a tentative variation in the spectral slope of the different star-forming regions, which is likely due to a change in the dust temperature and/or opacity across the source.Comment: MNRAS accepted 2015 April 1

    Profile alterations of a symmetrical light pulse coming through a quantum well

    Full text link
    The theory of a response of a two-energy-level system, irradiated by symmetrical light pulses, has been developed.(Suchlike electronic system approximates under the definite conditions a single ideal quantum well (QW) in a strong magnetic field {\bf H}, directed perpendicularly to the QW's plane, or in magnetic field absence.) The general formulae for the time-dependence of non-dimensional reflection {\cal R}(t), absorption {\cal A}(t) and transmission {\cal T}(t) of a symmetrical light pulse have been obtained. It has been shown that the singularities of three types exist on the dependencies {\cal R}(t), {\cal A}(t), {\cal T}(t). The oscillating time dependence of {\cal R}(t), {\cal A}(t), {\cal T}(t) on the detuning frequency \Delta\omega=\omega_l-\omega_0 takes place. The oscillations are more easily observable when \Delta\omega\simeq\gamma_l. The positions of the total absorption, reflection and transparency singularities are examined when the frequency \omega_l is detuned.Comment: 9 pages, 13 figures with caption
    corecore