7,980 research outputs found

    PALPAS - PAsswordLess PAssword Synchronization

    Full text link
    Tools that synchronize passwords over several user devices typically store the encrypted passwords in a central online database. For encryption, a low-entropy, password-based key is used. Such a database may be subject to unauthorized access which can lead to the disclosure of all passwords by an offline brute-force attack. In this paper, we present PALPAS, a secure and user-friendly tool that synchronizes passwords between user devices without storing information about them centrally. The idea of PALPAS is to generate a password from a high entropy secret shared by all devices and a random salt value for each service. Only the salt values are stored on a server but not the secret. The salt enables the user devices to generate the same password but is statistically independent of the password. In order for PALPAS to generate passwords according to different password policies, we also present a mechanism that automatically retrieves and processes the password requirements of services. PALPAS users need to only memorize a single password and the setup of PALPAS on a further device demands only a one-time transfer of few static data.Comment: An extended abstract of this work appears in the proceedings of ARES 201

    En-gauging Naturalness

    Get PDF
    The discovery of a 125.5 GeV Higgs with standard model-like couplings and naturalness considerations motivate gauge extensions of the MSSM. We analyse two variants of such an extension and carry out a phenomenological study of regions of the parameter space satisfying current direct and indirect constraints, employing state-of-the art two-loop RGE evolution and GMSB boundary conditions. We find that due to the appearance of non-decoupled D-terms it is possible to obtain a 125.5 GeV Higgs with stops below 2 TeV, while the uncolored sparticles could still lie within reach of the LHC. We compare the contributions of the stop sector and the non-decoupled D-terms to the Higgs mass, and study their effect on the Higgs couplings. We further investigate the nature of the next-to lightest supersymmetric particle, in light of the GMSB motivated searches currently being pursued by ATLAS and CMS.Comment: 45 pages, 17 figures, Supplementary material SupplementaryQSMxEW-Regime1.pdf attached in source. v2: preprint number added v3: Appendix A.6, Published in EPJ

    Hard-core bosons in flat band systems above the critical density

    Full text link
    We investigate the behaviour of hard-core bosons in one- and two-dimensional flat band systems, the chequerboard and the kagom\'e lattice and one-dimensional analogues thereof. The one dimensional systems have an exact local reflection symmetry which allows for exact results. We show that above the critical density an additional particle forms a pair with one of the other bosons and that the pair is localised. In the two-dimensional systems exact results are not available but variational results indicate a similar physical behaviour

    Ultralong coherence times in the purely electronic zero-phonon line emission of single molecules

    Full text link
    We report the observation of ultralong coherence times in the purely electronic zero-phonon line emission of single terrylenediimide molecules at 1.4 K. Vibronic excitation and spectrally resolved detection with a scanning Fabry-Perot spectrum analyzer were used to measure a linewidth of 65 MHz. This is within a factor of 1.6 of the transform limit. It therefore indicates that single molecule emission may be suited for applications in linear optics quantum computation. Additionally it is shown that high resolution spectra taken with the spectrum analyzer allow for the investigation of fast spectral dynamics in the emission of a single molecule.Comment: to appear in Applied Physics Letter

    Light third-generation squarks from flavour gauge messengers

    Get PDF
    We study models of gauge-mediated supersymmetry breaking with a gauged horizontal SU(3)_F symmetry acting on the quark superfields. If SU(3)_F is broken non-supersymmetrically by F-term vacuum expectation values, the massive gauge bosons and gauginos become messengers for SUSY breaking mediation. These gauge messenger fields induce a flavour-dependent, negative contribution to the soft masses of the squarks at one loop. In combination with the soft terms from standard gauge mediation, one obtains large and degenerate first- and second-generation squark masses, while the stops and sbottoms are light. We discuss the implications of this mechanism for the superparticle spectrum and for flavour precision observables. We also provide an explicit realization in a model with simultaneous SUSY and SU(3)_F breaking.Comment: 25 pages, 7 figure

    Preference Intensities in Repeated Collective Decision-Making

    Full text link
    We study decision rules for committees that repeatedly take a binary decision. Committee members are privately informed about their payoffs and monetary transfers are not feasible. In static environments, the only strategy-proof mechanisms are voting rules which are criticized for being inefficient as they do not condition on preference intensities. The dynamic structure of repeated decision-making allows for richer decision rules that overcome this inefficiency by making use of information on preference intensities. Nonetheless, we show that often simple voting is optimal for two-person committees. This holds for many prior type distributions and irrespective of the agents' patience

    Interplay of fast and slow dynamics in rare transition pathways: the disk-to-slab transition in the 2d Ising model

    Full text link
    Rare transitions between long-lived stable states are often analyzed in terms of free energy landscapes computed as functions of a few collective variables. Here, using transitions between geometric phases as example, we demonstrate that the effective dynamics of a system along these variables are an essential ingredient in the description of rare events and that the static perspective provided by the free energy alone may be misleading. In particular, we investigate the disk-to-slab transition in the two-dimensional Ising model starting with a calculation of a two-dimensional free energy landscape and the distribution of committor probabilities. While at first sight it appears that the committor is incompatible with the free energy, they can be reconciled with each other using a two-dimensional Smoluchowski equation that combines the free energy landscape with state dependent diffusion coefficients. These results illustrate that dynamical information is not only required to calculate rate constants but that neglecting dynamics may also lead to an inaccurate understanding of the mechanism of a given process.Comment: 12 pages, 17 figure

    Why Voting? A Welfare Analysis

    Full text link
    Which decision rule should we use to make a binary collective choice? While voting procedures are applied ubiquitously, they are criticized for being inefficient. Using monetary transfers, efficient choices can be made at the cost of a budget imbalance. Is it optimal to do so? And why are monetary transfers used only rarely in public decision making? We solve for the welfare maximizing social choice function taking monetary transfers explicitly into account. Under a mild regularity assumption on the distribution of types, we show that the optimal anonymous social choice function is implementable through qualified majority voting. Our result shows that using a VCG mechanism is not superior to voting in general and justifies the use of voting mechanisms. It thereby could explain why many decision rules employed in practice do not rely on monetary transfers
    corecore