138 research outputs found
Rotochemical Heating in Millisecond Pulsars. Formalism and Non-superfluid case
Rotochemical heating originates in a departure from beta equilibrium due to
spin-down compression in a rotating neutron star. The main consequence is that
the star eventually arrives at a quasi-equilibrium state, in which the thermal
photon luminosity depends only on the current value of the spin-down power,
which is directly measurable. Only in millisecond pulsars the spin-down power
remains high long enough for this state to be reached with a substantial
luminosity. We report an extensive study of the effect of this heating
mechanism on the thermal evolution of millisecond pulsars, developing a general
formalism in the slow-rotation approximation of general relativity that takes
the spatial structure of the star fully into account, and using a sample of
realistic equations of state to solve the non-superfluid case numerically. We
show that nearly all observed millisecond pulsars are very likely to be in the
quasi-equilibrium state. Our predicted quasi-equilibrium temperatures for PSR
J0437-4715 are only 20% lower than inferred from observations. Accounting for
superfluidity should increase the predicted value.Comment: 34 pages, 8 figures, AASTeX. Accepted for publication in Ap
Rotochemical heating in millisecond pulsars with Cooper pairing
When a rotating neutron star loses angular momentum, the reduction in the
centrifugal force makes it contract. This perturbs each fluid element, raising
the local pressure and originating deviations from beta equilibrium that
enhance the neutrino emissivity and produce thermal energy. This mechanism is
named rotochemical heating and has previously been studied for neutron stars of
non-superfluid matter, finding that they reach a quasi-steady state in which
the rate that the spin-down modifies the equilibrium concentrations is the same
to that of the neutrino reactions restoring the equilibrium. On the other hand,
the neutron star interior is believed to contain superfluid nucleons, which
affect the thermal evolution of the star by suppressing the neutrino reactions
and the specific heat, and opening new Cooper pairing reactions.
In this work we describe the thermal effects of Cooper pairing with spatially
uniform energy gaps of neutrons and protons on rotochemical heating in
millisecond pulsars (MSPs) when only modified Urca reactions are allowed. We
find that the chemical imbalances grow up to a value close to the energy gaps,
which is higher than the one of the nonsuperfluid case. Therefore, the surface
temperatures predicted with Cooper pairing are higher and explain the recent
measurement of MSP J0437-4715.Comment: VIII Symposium in Nuclear Physics and Applications: Nuclear and
Particle astrophysics. Appearing in the American Institute of Physics (AIP)
conference proceeding
Order-of-magnitude physics of neutron stars
We use basic physics and simple mathematics accessible to advanced
undergraduate students to estimate the main properties of neutron stars. We set
the stage and introduce relevant concepts by discussing the properties of
"everyday" matter on Earth, degenerate Fermi gases, white dwarfs, and scaling
relations of stellar properties with polytropic equations of state. Then, we
discuss various physical ingredients relevant for neutron stars and how they
can be combined in order to obtain a couple of different simple estimates of
their maximum mass, beyond which they would collapse, turning into black holes.
Finally, we use the basic structural parameters of neutron stars to briefly
discuss their rotational and electromagnetic properties.Comment: 13 pages, 3 figures, accepted for publication in European Physical
Journal
Constraining a possible time-variation of the gravitational constant through "gravitochemical heating" of neutron stars
A hypothetical time-variation of the gravitational constant would make
neutron stars expand or contract, so the matter in their interiors would depart
from beta equilibrium. This induces non-equilibrium weak reactions, which
release energy that is invested partly in neutrino emission and partly in
internal heating. Eventually, the star arrives at a stationary state in which
the temperature remains nearly constant, as the forcing through the change of
is balanced by the ongoing reactions. Using the surface temperature of the
nearest millisecond pulsar (PSR J04374715) inferred from ultraviolet
observations and results from theoretical modelling of the thermal evolution,
we estimate two upper limits for this variation: (1) if the fast, "direct Urca" reactions are allowed,
and (2) considering only the
slower, "modified Urca" reactions. The latter is among the most restrictive
upper limits obtained by other methods.Comment: IAU 2009 JD9 conference proceedings. MmSAIt, vol.80, in press. Paolo
Molaro & Elisabeth Vangioni, eds. - 4 pages, 2 figure
Rotochemical heating in millisecond pulsars: modified Urca reactions with uniform Cooper pairing gaps
Context: When a rotating neutron star loses angular momentum, the reduction
in the centrifugal force makes it contract. This perturbs each fluid element,
raising the local pressure and originating deviations from beta equilibrium
that enhance the neutrino emissivity and produce thermal energy. This mechanism
is named rotochemical heating and has previously been studied for neutron stars
of nonsuperfluid matter, finding that they reach a quasi-steady configuration
in which the rate at which the spin-down modifies the equilibrium
concentrations is the same at which neutrino reactions restore the equilibrium.
Aims: We describe the thermal effects of Cooper pairing with spatially uniform
energy gaps of neutrons \Delta_n and protons \Delta_p on the rotochemical
heating in millisecond pulsars (MSPs) when only modified Urca reactions are
allowed. By this, we may determine the amplitude of the superfluid energy gaps
for the neutron and protons needed to produce different thermal evolution of
MSPs. Results: We find that the chemical imbalances in the star grow up to the
threshold value \Delta_{thr}= min(\Delta_n+ 3\Delta_p, 3\Delta_n+\Delta_p),
which is higher than the quasi-steady state achieved in absence of
superfluidity. Therefore, the superfluid MSPs will take longer to reach the
quasi-steady state than their nonsuperfluid counterparts, and they will have a
higher a luminosity in this state, given by L_\gamma ~ (1-4)
10^{32}\Delta_{thr}/MeV \dot{P}_{-20}/P_{ms}^3 erg s^-1. We can explain the UV
emission of the PSR J0437-4715 for 0.05 MeV<\Delta_{thr}<0.45 MeV.Comment: (accepted version to be published in A&A
- …
