270 research outputs found

    Intrinsic activity in the fly brain gates visual information during behavioral choices

    Get PDF
    The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials) in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque) were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s) and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals

    Differential Regulation of the Period Genes in Striatal Regions following Cocaine Exposure

    Get PDF
    Several studies have suggested that disruptions in circadian rhythms contribute to the pathophysiology of multiple psychiatric diseases, including drug addiction. In fact, a number of the genes involved in the regulation of circadian rhythms are also involved in modulating the reward value for drugs of abuse, like cocaine. Thus, we wanted to determine the effects of chronic cocaine on the expression of several circadian genes in the Nucleus Accumbens (NAc) and Caudate Putamen (CP), regions of the brain known to be involved in the behavioral responses to drugs of abuse. Moreover, we wanted to explore the mechanism by which these genes are regulated following cocaine exposure. Here we find that after repeated cocaine exposure, expression of the Period (Per) genes and Neuronal PAS Domain Protein 2 (Npas2) are elevated, in a somewhat regionally selective fashion. Moreover, NPAS2 (but not CLOCK (Circadian Locomotor Output Cycles Kaput)) protein binding at Per gene promoters was enhanced following cocaine treatment. Mice lacking a functional Npas2 gene failed to exhibit any induction of Per gene expression after cocaine, suggesting that NPAS2 is necessary for this cocaine-induced regulation. Examination of Per gene and Npas2 expression over twenty-four hours identified changes in diurnal rhythmicity of these genes following chronic cocaine, which were regionally specific. Taken together, these studies point to selective disruptions in Per gene rhythmicity in striatial regions following chronic cocaine treatment, which are mediated primarily by NPAS2. © 2013 Falcon et al

    Transient activation of dopaminergic neurons during development modulates visual responsiveness, locomotion and brain activity in a dopamine ontogeny model of schizophrenia

    Get PDF
    It has been observed that certain developmental environmental risk factors for schizophrenia when modeled in rodents alter the trajectory of dopaminergic development, leading to persistent behavioural changes in adults. This has recently been articulated as the "dopamine ontogeny hypothesis of schizophrenia". To test one aspect of this hypothesis, namely that transient dopaminergic effects during development modulate attention-like behavior and arousal in adults, we turned to a small-brain model, Drosophila melanogaster. By applying genetic tools allowing transient activation or silencing of dopaminergic neurons in the fly brain, we investigated whether a critical window exists during development when altered dopamine (DA) activity levels could lead to impairments in arousal states in adult animals. We found that increased activity in dopaminergic neurons in later stages of development significantly increased visual responsiveness and locomotion, especially in adult males. This misallocation of visual salience and hyperactivity mimicked the effect of acute methamphetamine feeding to adult flies, suggesting up-regulated DA signaling could result from developmental manipulations. Finally, brain recordings revealed significantly reduced gamma-band activity in adult animals exposed to the transient developmental insult. Together, these data support the idea that transient alterations in DA signaling during development can permanently alter behavior in adults, and that a reductionist model such as Drosophila can be used to investigate potential mechanisms underlying complex cognitive disorders such as schizophrenia

    Circuit-based interrogation of sleep control.

    Get PDF
    Sleep is a fundamental biological process observed widely in the animal kingdom, but the neural circuits generating sleep remain poorly understood. Understanding the brain mechanisms controlling sleep requires the identification of key neurons in the control circuits and mapping of their synaptic connections. Technical innovations over the past decade have greatly facilitated dissection of the sleep circuits. This has set the stage for understanding how a variety of environmental and physiological factors influence sleep. The ability to initiate and terminate sleep on command will also help us to elucidate its functions within and beyond the brain

    Ih Current Is Necessary to Maintain Normal Dopamine Fluctuations and Sleep Consolidation in Drosophila

    Get PDF
    HCN channels are becoming pharmacological targets mainly in cardiac diseases. But apart from their well-known role in heart pacemaking, these channels are widely expressed in the nervous system where they contribute to the neuron firing pattern. Consequently, abolishing Ih current might have detrimental consequences in a big repertoire of behavioral traits. Several studies in mammals have identified the Ih current as an important determinant of the firing activity of dopaminergic neurons, and recent evidences link alterations in this current to various dopamine-related disorders. We used the model organism Drosophila melanogaster to investigate how lack of Ih current affects dopamine levels and the behavioral consequences in the sleep∶activity pattern. Unlike mammals, in Drosophila there is only one gene encoding HCN channels. We generated a deficiency of the DmIh core gene region and measured, by HPLC, levels of dopamine. Our data demonstrate daily variations of dopamine in wild-type fly heads. Lack of Ih current dramatically alters dopamine pattern, but different mechanisms seem to operate during light and dark conditions. Behaviorally, DmIh mutant flies display alterations in the rest∶activity pattern, and altered circadian rhythms. Our data strongly suggest that Ih current is necessary to prevent dopamine overproduction at dark, while light input allows cycling of dopamine in an Ih current dependent manner. Moreover, lack of Ih current results in behavioral defects that are consistent with altered dopamine levels

    Cross-translational studies in human and Drosophila identify markers of sleep loss

    Get PDF
    Inadequate sleep has become endemic, which imposes a substantial burden for public health and safety. At present, there are no objective tests to determine if an individual has gone without sleep for an extended period of time. Here we describe a novel approach that takes advantage of the evolutionary conservation of sleep to identify markers of sleep loss. To begin, we demonstrate that IL-6 is increased in rats following chronic total sleep deprivation and in humans following 30 h of waking. Discovery experiments were then conducted on saliva taken from sleep-deprived human subjects to identify candidate markers. Given the relationship between sleep and immunity, we used Human Inflammation Low Density Arrays to screen saliva for novel markers of sleep deprivation. Integrin αM (ITGAM) and Anaxin A3 (AnxA3) were significantly elevated following 30 h of sleep loss. To confirm these results, we used QPCR to evaluate ITGAM and AnxA3 in independent samples collected after 24 h of waking; both transcripts were increased. The behavior of these markers was then evaluated further using the power of Drosophila genetics as a cost-effective means to determine whether the marker is associated with vulnerability to sleep loss or other confounding factors (e.g., stress). Transcript profiling in flies indicated that the Drosophila homologues of ITGAM were not predictive of sleep loss. Thus, we examined transcript levels of additional members of the integrin family in flies. Only transcript levels of scab, the Drosophila homologue of Integrin α5 (ITGA5), were associated with vulnerability to extended waking. Since ITGA5 was not included on the Low Density Array, we returned to human samples and found that ITGA5 transcript levels were increased following sleep deprivation. These cross-translational data indicate that fly and human discovery experiments are mutually reinforcing and can be used interchangeably to identify candidate biomarkers of sleep loss

    Lmo Mutants Reveal a Novel Role for Circadian Pacemaker Neurons in Cocaine-Induced Behaviors

    Get PDF
    Drosophila has been developed recently as a model system to investigate the molecular and neural mechanisms underlying responses to drugs of abuse. Genetic screens for mutants with altered drug-induced behaviors thus provide an unbiased approach to define novel molecules involved in the process. We identified mutations in the Drosophila LIM-only (LMO) gene, encoding a regulator of LIM-homeodomain proteins, in a genetic screen for mutants with altered cocaine sensitivity. Reduced Lmo function increases behavioral responses to cocaine, while Lmo overexpression causes the opposite effect, reduced cocaine responsiveness. Expression of Lmo in the principal Drosophila circadian pacemaker cells, the PDF-expressing ventral lateral neurons (LN(v)s), is sufficient to confer normal cocaine sensitivity. Consistent with a role for Lmo in LN(v) function, Lmo mutants also show defects in circadian rhythms of behavior. However, the role for LN(v)s in modulating cocaine responses is separable from their role as pacemaker neurons: ablation or functional silencing of the LN(v)s reduces cocaine sensitivity, while loss of the principal circadian neurotransmitter PDF has no effect. Together, these results reveal a novel role for Lmo in modulating acute cocaine sensitivity and circadian locomotor rhythmicity, and add to growing evidence that these behaviors are regulated by shared molecular mechanisms. The finding that the degree of cocaine responsiveness is controlled by the Drosophila pacemaker neurons provides a neuroanatomical basis for this overlap. We propose that Lmo controls the responsiveness of LN(v)s to cocaine, which in turn regulate the flies' behavioral sensitivity to the drug

    Sleep-Deprivation Regulates α-2 Adrenergic Responses of Rat Hypocretin/Orexin Neurons

    Get PDF
    We recently demonstrated, in rat brain slices, that the usual excitation by noradrenaline (NA) of hypocretin/orexin (hcrt/orx) neurons was changed to an inhibition following sleep deprivation (SD). Here we describe that in control condition (CC), i.e. following 2 hours of natural sleep in the morning, the α2-adrenergic receptor (α2-AR) agonist, clonidine, had no effect on hcrt/orx neurons, whereas following 2 hours of SD (SDC), it hyperpolarized the neurons by activating G-protein-gated inwardly rectifying potassium (GIRK) channels. Since concentrations of clonidine up to a thousand times (100 µM) higher than those effective in SDC (100 nM), were completely ineffective in CC, a change in the availability of G-proteins is unlikely to explain the difference between the two conditions. To test whether the absence of effect of clonidine in CC could be due to a down-regulation of GIRK channels, we applied baclofen, a GABAB agonist known to also activate GIRK channels, and found that it hyperpolarized hcrt/orx neurons in that condition. Moreover, baclofen occluded the response to clonidine in SDC, indicating that absence of effect of clonidine in CC could not be attributed to down-regulation of GIRK channels. We finally tested whether α2-ARs were still available at the membrane in CC and found that clonidine could reduce calcium currents, indicating that α2-ARs associated with calcium channels remain available in that condition. Taken together, these results suggest that a pool of α2-ARs associated with GIRK channels is normally down-regulated (or desensitized) in hcrt/orx neurons to only become available for their inhibition following sleep deprivation

    The Circadian System Is a Target and Modulator of Prenatal Cocaine Effects

    Get PDF
    BACKGROUND. Prenatal exposure to cocaine can be deleterious to embryonic brain development, but the results in humans remain controversial, the mechanisms involved are not well understood and effective therapies are yet to be designed. We hypothesize that some of the prenatal effects of cocaine might be related to dysregulation of physiological rhythms due to alterations in the integrating circadian clock function. METHODOLOGY AND PRINCIPLE FINDINGS. Here we introduce a new high-throughput genetically well-characterized diurnal vertebrate model for studying the mechanisms of prenatal cocaine effects by demonstrating reduced viability and alterations in the pattern of neuronal development following repeated cocaine exposure in zebrafish embryos. This effect is associated with acute cocaine-induced changes in the expression of genes affecting growth (growth hormone, zGH) and neurotransmission (dopamine transporter, zDAT). Analysis of circadian gene expression, using quantitative real-time RT-PCR (QPCR), demonstrates that cocaine acutely and dose-dependently changes the expression of the circadian genes (zPer-3, zBmal-1) and genes encoding melatonin receptors (zMelR) that mediate the circadian message to the entire organism. Moreover, the effects of prenatal cocaine depend on the time of treatment, being more robust during the day, independent of whether the embryos are raised under the light-dark cycle or in constant light. The latter suggests involvement of the inherited circadian factors. The principal circadian hormone, melatonin, counteracts the effects of cocaine on neuronal development and gene expression, acting via specific melatonin receptors. CONCLUSIONS/SIGNIFICANCE. These findings demonstrate that, in a diurnal vertebrate, prenatal cocaine can acutely dysregulate the expression of circadian genes and those affecting melatonin signaling, growth and neurotransmission, while repeated cocaine exposure can alter neuronal development. Daily variation in these effects of cocaine and their attenuation by melatonin suggest a potential prophylactic or therapeutic role for circadian factors in prenatal cocaine exposure.National Institutes of Health (DA1541801, MH 065528); National Institute on Drug Abuse (DA-4-7733

    Pre-Fibrillar α-Synuclein Mutants Cause Parkinson's Disease-Like Non-Motor Symptoms in Drosophila

    Get PDF
    Parkinson's disease (PD) is linked to the formation of insoluble fibrillar aggregates of the presynaptic protein α-Synuclein (αS) in neurons. The appearance of such aggregates coincides with severe motor deficits in human patients. These deficits are often preceded by non-motor symptoms such as sleep-related problems in the patients. PD-like motor deficits can be recapitulated in model organisms such as Drosophila melanogaster when αS is pan-neurally expressed. Interestingly, both these deficits are more severe when αS mutants with reduced aggregation properties are expressed in flies. This indicates that that αS aggregation is not the primary cause of the PD-like motor symptoms. Here we describe a model for PD in Drosophila which utilizes the targeted expression of αS mutants in a subset of dopadecarboxylase expressing serotonergic and dopaminergic (DA) neurons. Our results show that targeted expression of pre-fibrillar αS mutants not only recapitulates PD-like motor symptoms but also the preceding non-motor symptoms such as an abnormal sleep-like behavior, altered locomotor activity and abnormal circadian periodicity. Further, the results suggest that the observed non-motor symptoms in flies are caused by an early impairment of neuronal functions rather than by the loss of neurons due to cell death
    corecore