7,767 research outputs found

    Charge shelving and bias spectroscopy for the readout of a charge-qubit on the basis of superposition states

    Full text link
    Charge-based qubits have been proposed as fundamental elements for quantum computers. One commonly proposed readout device is the single-electron transistor (SET). SETs can distinguish between localized charge states, but lack the sensitivity to directly distinguish superposition states, which have greatly enhanced coherence times compared with position states. We propose introducing a third dot, and exploiting energy dependent tunnelling from the qubit into this dot (bias spectroscopy) for pseudo-spin to charge conversion and superposition basis readout. We introduce an adiabatic fast passage-style charge pumping technique which enables efficient and robust readout via charge shelving, avoiding problems due to finite SET measurement time.Comment: 4 pages, 3 figures, note slightly changed title, replaced with journal versio

    Measuring the response of human head and neck squamous cell carcinoma to irradiation in a microfluidic model allowing customized therapy

    Get PDF
    Radiotherapy is the standard treatment for head and neck squamous cell carcinoma (HNSCC), however, radioresistance remains a major clinical problem despite significant improvements in treatment protocols. Therapeutic outcome could potentially be improved if a patient's tumour response to irradiation could be predicted ex vivo before clinical application. The present study employed a bespoke microfluidic device to maintain HNSCC tissue whilst subjecting it to external beam irradiation and measured the responses using a panel of cell death and proliferation markers. HNSCC biopsies from five newly-presenting patients [2 lymph node (LN); 3 primary tumour (PT)] were divided into parallel microfluidic devices and replicates of each tumour were subjected to single-dose irradiation (0, 5, 10, 15 and 20 Gy). Lactate dehydrogenase (LDH) release was measured and tissue sections were stained for cytokeratin (CK), cleaved-CK18 (cCK18), phosphorylated-H2AX (λH2AX) and Ki.67 by immunohistochemistry. In addition, fragmented DNA was detected using terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). Compared with non.irradiated controls, higher irradiation doses resulted in elevated CK18-labelling index in two lymph nodes [15 Gy; 34.8% on LN1 and 31.7% on LN2 (p=0.006)] and a single laryngeal primary tumour (20 Gy; 31.5%; p=0.014). Significantly higher levels of DNA fragmentation were also detected in both lymph node samples and one primary tumour but at varying doses of irradiation, i.e., LN1 (20 Gy; 27.6%; p=0.047), LN2 (15 Gy; 15.3%; p=0.038) and PT3 (10 Gy; 35.2%; p=0.01). The λH2AX expression was raised but not significantly in the majority of samples. The percentage of Ki.67 positive nuclei reduced dose-dependently following irradiation. In contrast no significant difference in LDH release was observed between irradiated groups and controls. There is clear interand intra-patient variability in response to irradiation when measuring a variety of parameters, which offers the potential for the approach to provide clinically valuable information

    Pfaffian-like ground states for bosonic atoms and molecules in one-dimensional optical lattices

    Get PDF
    We study ground states and elementary excitations of a system of bosonic atoms and diatomic Feshbach molecules trapped in a one-dimensional optical lattice using exact diagonalization and variational Monte Carlo methods. We primarily study the case of an average filling of one boson per site. In agreement with bosonization theory, we show that the ground state of the system in the thermodynamic limit corresponds to the Pfaffian-like state when the system is tuned towards the superfluid-to-Mott insulator quantum phase transition. Our study clarifies the possibility of the creation of exotic Pfaffian-like states in realistic one-dimensional systems. We also present preliminary evidence that such states support non-Abelian anyonic excitations that have potential application for fault-tolerant topological quantum computation.Comment: 10 pages, 10 figures. Matching the version published Phys.Rev.

    Heroic Helping: The Effects of Priming Superhero Images on Prosociality

    Get PDF
    Two experiments examined how exposure to superhero images influences both prosociality and meaning in life. In Experiment 1 (N = 246) exposed individuals to scenes with superhero images or neutral images. Individuals primed with superhero images reported greater helping intentions relative to the control group, which, in turn, were associated with increased meaning in life (indirect effect only; no direct effect). In Experiment 2 (N = 123), individuals exposed to a superhero poster helped an experimenter in a tedious task more than those exposed to a bicycle poster, though no differences were found for meaning in life. These results suggest that subtle activation of superhero stimuli increases prosocial intentions and behavior

    Mapping cellular processes in the mesenchyme during palatal development in the absence of Tbx1 reveals complex proliferation changes and perturbed cell packing and polarity

    Get PDF
    The 22q11 deletion syndromes represent a spectrum of overlapping conditions including cardiac defects and craniofacial malformations. Amongst the craniofacial anomalies that are seen, cleft of the secondary palate is a common feature. Haploinsufficiency of TBX1 is believed to be a major contributor toward many of the developmental structural anomalies that occur in these syndromes, and targeted deletion of Tbx1 in the mouse reproduces many of these malformations, including cleft palate. However, the cellular basis of this defect is only poorly understood. Here, palatal development in the absence of Tbx1 has been analysed, focusing on cellular properties within the whole mesenchymal volume of the palatal shelves. Novel image analyses and data presentation tools were applied to quantify cell proliferation rates, including regions of elevated as well as reduced proliferation, and cell packing in the mesenchyme. Also, cell orientations (nucleus–Golgi axis) were mapped as a potential marker of directional cell movement. Proliferation differed only subtly between wild‐type and mutant until embryonic day (E)15.5 when proliferation in the mutant was significantly lower. Tbx1 (−/−) palatal shelves had slightly different cell packing than wild‐type, somewhat lower before elevation and higher at E15.5 when the wild‐type palate has elevated and fused. Cell orientation is biased towards the shelf distal edge in the mid‐palate of wild‐type embryos but is essentially random in the Tbx1 (−/−) mutant shelves, suggesting that polarised processes such as directed cell rearrangement might be causal for the cleft phenotype. The implications of these findings in the context of further understanding Tbx1 function during palatogenesis and of these methods for the more general analysis of genotype–phenotype functional relationships are discussed

    Primordial black hole constraints in cosmologies with early matter domination

    Get PDF
    Moduli fields, a natural prediction of any supergravity and superstring-inspired supersymmetry theory, may lead to a prolonged period of matter domination in the early Universe. This can be observationally viable provided the moduli decay early enough to avoid harming nucleosynthesis. If primordial black holes form, they would be expected to do so before or during this matter dominated era. We examine the extent to which the standard primordial black hole constraints are weakened in such a cosmology. Permitted mass fractions of black holes at formation are of order 10810^{-8}, rather than the usual 102010^{-20} or so. If the black holes form from density perturbations with a power-law spectrum, its spectral index is limited to n1.3n \lesssim 1.3, rather than the n1.25n \lesssim 1.25 obtained in the standard cosmology.Comment: 7 pages RevTeX file with four figures incorporated (uses RevTeX and epsf). Also available by e-mailing ARL, or by WWW at http://star-www.maps.susx.ac.uk/papers/infcos_papers.htm

    Fractional quantum Hall states in a Ge quantum well

    Get PDF
    Measurements of the Hall and dissipative conductivity of a strained Ge quantum well on a SiGe/(001)Si substrate in the quantum Hall regime are reported. We analyse the results in terms of thermally activated quantum tunneling of carriers from one internal edge state to another across saddle points in the long range impurity potential. This shows that the gaps for different filling fractions closely follow the dependence predicted by theory. We also find that the estimates of the separation of the edge states at the saddle are in line with the expectations of an electrostatic model in the lowest spin-polarised Landau level (LL), but not in the spin-reversed LL where the density of quasiparticle states is not high enough to accommodate the carriers required
    corecore