6,637 research outputs found

    On Statistical Aspects of Qjets

    Get PDF
    The process by which jet algorithms construct jets and subjets is inherently ambiguous and equally well motivated algorithms often return very different answers. The Qjets procedure was introduced by the authors to account for this ambiguity by considering many reconstructions of a jet at once, allowing one to assign a weight to each interpretation of the jet. Employing these weighted interpretations leads to an improvement in the statistical stability of many measurements. Here we explore in detail the statistical properties of these sets of weighted measurements and demonstrate how they can be used to improve the reach of jet-based studies.Comment: 29 pages, 6 figures. References added, minor modification of the text. This version to appear in JHE

    Trapping and detection of single atoms using a spherical mirror

    Full text link
    We fabricate a miniature spherical mirror for tightly focusing an optical dipole trap for neutral atoms. The mirror formation process is modelled to predict the dimensions for particular fabrication parameters. We integrate the spherical mirror with a neutral atom experiment to trap and detect a single atom with high efficiency. The mirror serves the dual purpose of focusing the dipole trap as well as collection of the atomic fluorescence into an optical fibre.Comment: 13 pages, 6 figure

    Qjets: A Non-Deterministic Approach to Tree-Based Jet Substructure

    Full text link
    Jet substructure is typically studied using clustering algorithms, such as kT, which arrange the jets' constituents into trees. Instead of considering a single tree per jet, we propose that multiple trees should be considered, weighted by an appropriate metric. Then each jet in each event produces a distribution for an observable, rather than a single value. Advantages of this approach include: 1) observables have significantly increased statistical stability; and, 2) new observables, such as the variance of the distribution, provide new handles for signal and background discrimination. For example, we find that employing a set of trees substantially reduces the observed fluctuations in the pruned mass distribution, enhancing the likelihood of new particle discovery for a given integrated luminosity. Furthermore, the resulting pruned mass distributions for (background) QCD jets are found to be substantially wider than that for (signal) jets with intrinsic mass scales, e.g. jets containing a W decay. A cut on this width yields a substantial enhancement in significance relative to a cut on the standard pruned jet mass alone. In particular the luminosity needed for a given significance requirement decreases by a factor of two relative to standard pruning.Comment: Minor changes to match journal versio

    First harmonic measurements of the spin Seebeck effect

    Full text link
    We present measurements of the spin Seebeck effect (SSE) by a technique that combines alternating currents (AC) and direct currents (DC). The method is applied to a ferrimagnetic insulator/heavy metal bilayer, Y3_3Fe5_5O12_{12}(YIG)/Pt. Typically, SSE measurements use an AC current to produce an alternating temperature gradient and measure the voltage generated by the inverse spin-Hall effect in the heavy metal at twice the AC frequency. Here we show that when Joule heating is associated with AC and DC bias currents, the SSE response occurs at the frequency of the AC current drive and can be larger than the second harmonic SSE response. We compare the first and second harmonic responses and show that they are consistent with the SSE. The field dependence of the voltage response is used to characterize the damping-like and field-like torques. This method can be used to explore nonlinear thermoelectric effects and spin dynamics induced by temperature gradients.Comment: 4 pages, 5 figure

    The Dynamics of Entry and Exit

    Get PDF
    The relation between profits and the number of firms in a market is one of the essential topics in the field of industrial organization. Usually, the relation is modeled in an error-correction framework where profits and/or the number of firms respond to out-of-equilibrium situations. In an out-of-equilibrium situation one or both of these variables deviate from some long-term sustainable level. These models predict that in situations of equilibrium, the number of firms does not change and hence, entry equals exit. Moreover, in equilibrium entry and exit are expected to be equal to zero. These predictions are at odds with real life observations showing that entry and exit levels are significantly positive in all markets of substantial size and that entry and exit levels often differ drastically. In this paper we develop a new model for the relation between profit levels and the number of firms by specifying not only an equation for the equilibrium level of profits in a market but also equations for the equilibrium levels of entry and exit. In our empirical application we show that our entry and exit equations satisfy the usual errorcorrection conditions. We also find that a one-time positive shock to entry or profits has a small but permanent positive effect on both the number of firms and total industry profits

    Selective interlayer ferromagnetic coupling between the Cu spins in YBa2_2 Cu3_3 O7x_{7-x} grown on top of La0.7_{0.7} Ca0.3_{0.3} MnO3_3

    Full text link
    Studies to date on ferromagnet/d-wave superconductor heterostructures focus mainly on the effects at or near the interfaces while the response of bulk properties to heterostructuring is overlooked. Here we use resonant soft x-ray scattering spectroscopy to reveal a novel c-axis ferromagnetic coupling between the in-plane Cu spins in YBa2_2 Cu3_3 O7x_{7-x} (YBCO) superconductor when it is grown on top of ferromagnetic La0.7_{0.7} Ca0.3_{0.3} MnO3_3 (LCMO) manganite layer. This coupling, present in both normal and superconducting states of YBCO, is sensitive to the interfacial termination such that it is only observed in bilayers with MnO_2but not with La0.7_{0.7} Ca0.3_{0.3} interfacial termination. Such contrasting behaviors, we propose, are due to distinct energetic of CuO chain and CuO2_2 plane at the La0.7_{0.7} Ca0.3_{0.3} and MnO2_2 terminated interfaces respectively, therefore influencing the transfer of spin-polarized electrons from manganite to cuprate differently. Our findings suggest that the superconducting/ferromagnetic bilayers with proper interfacial engineering can be good candidates for searching the theorized Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state in cuprates and studying the competing quantum orders in highly correlated electron systems.Comment: Please note the change of the title. Text might be slightly different from the published versio

    Tracking cortical entrainment in neural activity: auditory processes in human temporal cortex.

    Get PDF
    A primary objective for cognitive neuroscience is to identify how features of the sensory environment are encoded in neural activity. Current auditory models of loudness perception can be used to make detailed predictions about the neural activity of the cortex as an individual listens to speech. We used two such models (loudness-sones and loudness-phons), varying in their psychophysiological realism, to predict the instantaneous loudness contours produced by 480 isolated words. These two sets of 480 contours were used to search for electrophysiological evidence of loudness processing in whole-brain recordings of electro- and magneto-encephalographic (EMEG) activity, recorded while subjects listened to the words. The technique identified a bilateral sequence of loudness processes, predicted by the more realistic loudness-sones model, that begin in auditory cortex at ~80 ms and subsequently reappear, tracking progressively down the superior temporal sulcus (STS) at lags from 230 to 330 ms. The technique was then extended to search for regions sensitive to the fundamental frequency (F0) of the voiced parts of the speech. It identified a bilateral F0 process in auditory cortex at a lag of ~90 ms, which was not followed by activity in STS. The results suggest that loudness information is being used to guide the analysis of the speech stream as it proceeds beyond auditory cortex down STS toward the temporal pole.This work was supported by an EPSRC grant to William D. Marslen-Wilson and Paula Buttery (EP/F030061/1), an ERC Advanced Grant (Neurolex) to William D. Marslen-Wilson, and by MRC Cognition and Brain Sciences Unit (CBU) funding to William D. Marslen-Wilson (U.1055.04.002.00001.01). Computing resources were provided by the MRC-CBU and the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/). Andrew Liu and Phil Woodland helped with the HTK speech recogniser and Russell Thompson with the Matlab code. We thank Asaf Bachrach, Cai Wingfield, Isma Zulfiqar, Alex Woolgar, Jonathan Peelle, Li Su, Caroline Whiting, Olaf Hauk, Matt Davis, Niko Kriegeskorte, Paul Wright, Lorraine Tyler, Rhodri Cusack, Brian Moore, Brian Glasberg, Rik Henson, Howard Bowman, Hideki Kawahara, and Matti Stenroos for invaluable support and suggestions.This is the final published version. The article was originally published in Frontiers in Computational Neuroscience, 10 February 2015 | doi: 10.3389/fncom.2015.0000

    Industry Dynamics and Entrepreneurship: An Equilibrium Model

    Get PDF
    This paper conducts the first general equilibrium analysis of the role of entry, exit and profits in industry dynamics. The benefit of our model is twofold. First, to discriminate between entrants� role of performing the entrepreneurial function of creating disequilibrium and the conventional equilibrating role of moving the industry to a new equilibrium. Second, to discriminate between three aspects of industry dynamics: the effect of entry and exit on market equilibrium, duration of disequilibrium and patterns of adjustment. Using a rich data set of the retail industry, we construct a dynamic simultaneous equilibrium model of profits, entry and exit. We find that indeed entrants play an entrepreneurial function causing long periods of disequilibrium after which a new equilibrium is attained. Moreover, we find ample support for the statement that disequilibrium is the essence of economic progress

    Coronagraphic Observations of the Lunar Sodium Exosphere January-June, 2017

    Get PDF
    In order to observe the lunar sodium exosphere out to one-half degree around the Moon, we designed, built and installed a small robotically controlled coronagraph at the Winer Observatory in Sonoita, Arizona. Observations are obtained remotely every available clear night from our home base at Goddard Space Flight Center or from Prescott, Arizona. We employ an Andover temperature-controlled 1.5-angstrom-wide narrow-band filter centered on the sodium D2 line, and a similar 1.5-angstrom filter centered blueward of the D2 line by 3 angstroms for continuum observations. Our data encompass lunations in 2015, 2016, and 2017, thus we have a long baseline of sodium exospheric calibrated images. During the course of three years we have refined the observational sequence in many respects. Therefore this paper only presents the results of the spring, 2017, observing season. We present limb profiles from the south pole to the north pole for many lunar phases. Our data do not fit any power of cosine model as a function of lunar phase or with latitude. The extended Na exosphere has a characteristic temperature of about 22506750 degrees Kelvin, indicative of a partially escaping exosphere. The hot escaping component may be indicative of a mixture of impact vaporization and a sputtered component
    corecore