309 research outputs found
Recommended from our members
Systems Analysis Implicates WAVE2 Complex in the Pathogenesis of Developmental Left-Sided Obstructive Heart Defects.
Genetic variants are the primary driver of congenital heart disease (CHD) pathogenesis. However, our ability to identify causative variants is limited. To identify causal CHD genes that are associated with specific molecular functions, the study used prior knowledge to filter de novo variants from 2,881 probands with sporadic severe CHD. This approach enabled the authors to identify an association between left ventricular outflow tract obstruction lesions and genes associated with the WAVE2 complex and regulation of small GTPase-mediated signal transduction. Using CRISPR zebrafish knockdowns, the study confirmed that WAVE2 complex proteins brk1, nckap1, and wasf2 and the regulators of small GTPase signaling cul3a and racgap1 are critical to cardiac development
Recommended from our members
An integrated clinical program and crowdsourcing strategy for genomic sequencing and Mendelian disease gene discovery.
Despite major progress in defining the genetic basis of Mendelian disorders, the molecular etiology of many cases remains unknown. Patients with these undiagnosed disorders often have complex presentations and require treatment by multiple health care specialists. Here, we describe an integrated clinical diagnostic and research program using whole-exome and whole-genome sequencing (WES/WGS) for Mendelian disease gene discovery. This program employs specific case ascertainment parameters, a WES/WGS computational analysis pipeline that is optimized for Mendelian disease gene discovery with variant callers tuned to specific inheritance modes, an interdisciplinary crowdsourcing strategy for genomic sequence analysis, matchmaking for additional cases, and integration of the findings regarding gene causality with the clinical management plan. The interdisciplinary gene discovery team includes clinical, computational, and experimental biomedical specialists who interact to identify the genetic etiology of the disease, and when so warranted, to devise improved or novel treatments for affected patients. This program effectively integrates the clinical and research missions of an academic medical center and affords both diagnostic and therapeutic options for patients suffering from genetic disease. It may therefore be germane to other academic medical institutions engaged in implementing genomic medicine programs
How Emotion Strengthens the Recollective Experience: A Time-Dependent Hippocampal Process
Emotion significantly strengthens the subjective recollective experience even when objective accuracy of the memory is not improved. Here, we examine if this modulation is related to the effect of emotion on hippocampal-dependent memory consolidation. Two critical predictions follow from this hypothesis. First, since consolidation is assumed to take time, the enhancement in the recollective experience for emotional compared to neutral memories should become more apparent following a delay. Second, if the emotion advantage is critically dependent on the hippocampus, then the effects should be reduced in amnesic patients with hippocampal damage. To test these predictions we examined the recollective experience for emotional and neutral photos at two retention intervals (Experiment 1), and in amnesics and controls (Experiment 2). Emotional memories were associated with an enhancement in the recollective experience that was greatest after a delay, whereas familiarity was not influenced by emotion. In amnesics with hippocampal damage the emotion effect on recollective experience was reduced. Surprisingly, however, these patients still showed a general memory advantage for emotional compared to neutral items, but this effect was manifest primarily as a facilitation of familiarity. The results support the consolidation hypothesis of recollective experience, but suggest that the effects of emotion on episodic memory are not exclusively hippocampally mediated. Rather, emotion may enhance recognition by facilitating familiarity when recollection is impaired due to hippocampal damage
Robust identification of deletions in exome and genome sequence data based on clustering of Mendelian errors
Multiple tools have been developed to identify copy number variants (CNVs) from whole exome (WES) and whole genome sequencing (WGS) data. Current tools such as XHMM for WES and CNVnator for WGS identify CNVs based on changes in read depth. For WGS, other methods to identify CNVs include utilizing discordant read pairs and split reads and genome-wide local assembly with tools such as Lumpy and SvABA, respectively. Here, we introduce a new method to identify deletion CNVs from WES and WGS trio data based on the clustering of Mendelian errors (MEs). Using our Mendelian Error Method (MEM), we identified 127 deletions (inherited and de novo) in 2,601 WES trios from the Pediatric Cardiac Genomics Consortium, with a validation rate of 88% by digital droplet PCR. MEM identified additional de novo deletions compared with XHMM, and a significant enrichment of 15q11.2 deletions compared with controls. In addition, MEM identified eight cases of uniparental disomy, sample switches, and DNA contamination. We applied MEM to WGS data from the Genome In A Bottle Ashkenazi trio and identified deletions with 97% specificity. MEM provides a robust, computationally inexpensive method for identifying deletions, and an orthogonal approach for verifying deletions called by other tools
Drum training induces long-term plasticity in the cerebellum and connected cortical thickness
It is unclear to what extent cerebellar networks show long-term plasticity and accompanied changes in cortical structures. Using drumming as a demanding multimodal motor training, we compared cerebellar lobular volume and white matter microstructure, as well as cortical thickness of 15 healthy non-musicians before and after learning to drum, and 16 age matched novice control participants. After 8 weeks of group drumming instruction, 3 x 30 minutes per week, we observed the cerebellum significantly changing its grey (volume increase of left VIIIa, relative decrease of VIIIb and vermis Crus I volume) and white matter microstructure in the inferior cerebellar peduncle. These plastic cerebellar changes were complemented by changes in cortical thickness (increase in left paracentral, right precuneus and right but not left superior frontal thickness), suggesting an interplay of cerebellar learning with cortical structures enabled through cerebellar pathways
Recommended from our members
Comprehensive molecular characterization of gastric adenocarcinoma
Gastric cancer is a leading cause of cancer deaths, but analysis of its molecular and clinical characteristics has been complicated by histological and aetiological heterogeneity. Here we describe a comprehensive molecular evaluation of 295 primary gastric adenocarcinomas as part of The Cancer Genome Atlas (TCGA) project. We propose a molecular classification dividing gastric cancer into four subtypes: tumours positive for Epstein–Barr virus, which display recurrent PIK3CA mutations, extreme DNA hypermethylation, and amplification of JAK2, CD274 (also known as PD-L1) and PDCD1LG2 (also knownasPD-L2); microsatellite unstable tumours, which show elevated mutation rates, including mutations of genes encoding targetable oncogenic signalling proteins; genomically stable tumours, which are enriched for the diffuse histological variant and mutations of RHOA or fusions involving RHO-family GTPase-activating proteins; and tumours with chromosomal instability, which show marked aneuploidy and focal amplification of receptor tyrosine kinases. Identification of these subtypes provides a roadmap for patient stratification and trials of targeted therapies
Regulatory T cells attenuate chronic inflammation and cardiac fibrosis in hypertrophic cardiomyopathy
Hypertrophic cardiomyopathy (HCM) is a common, serious, genetic heart muscle disorder. Although the biophysical mechanisms by which gene variants in sarcomeric proteins disrupt cardiomyocyte function are largely understood, the cellular and molecular pathways leading to the complex, variable, and adverse remodeling of the non-myocyte compartment are unexplained. Here, we report that postmortem and explanted human HCM hearts exhibited chronic focal leukocyte infiltration and prominent activation of immune cells. Gene set enrichment analysis (GSEA) revealed that active immune responses were present in the mid- and late-stage HCM human hearts and in mouse hearts from several HCM mouse models. The alpha cardiac actin 1-E99K (Actc1E99K) HCM mouse model was selected for the study because it closely recapitulates the features of progressive remodeling and fibrosis seen in advanced disease in patients. Genetic depletion of lymphocytes in recombination activating gene 1–knockout (Rag-1KO) mice led to marked exacerbation of adverse cardiac remodeling in the Actc1E99K mice. Detailed characterization of cardiac regulatory T cells (Treg cells) demonstrated a time-dependent increase in Actc1E99K hearts with altered immunosuppressive profiles. Adoptive transfer of splenic Treg cells reduced cardiac fibrosis and improved systolic dysfunction in Actc1E99K mice with or without lymphocytes. In addition, low-dose interleukin-2 (IL-2)/anti–IL-2 complex (IL-2/c), which specifically induced Treg cell expansion in vivo, ameliorated cardiac fibrosis and reduced macrophage infiltration and activation in Actc1E99K mice. These data contribute to our understanding of HCM and support the use of Treg cells as a clinically testable therapeutic strategy for cardiac fibrosis in the HCM heart
Damaging variants in FOXI3 cause microtia and craniofacial microsomia
Q1Q1Pacientes con Microtia y Microsomía craneofacialPurpose:
Craniofacial microsomia (CFM) represents a spectrum of craniofacial malformations, ranging from isolated microtia with or without aural atresia to underdevelopment of the mandible, maxilla, orbit, facial soft tissue, and/or facial nerve. The genetic causes of CFM remain largely unknown.
Methods:
We performed genome sequencing and linkage analysis in patients and families with microtia and CFM of unknown genetic etiology. The functional consequences of damaging missense variants were evaluated through expression of wild-type and mutant proteins in vitro.
Results:
We studied a 5-generation kindred with microtia, identifying a missense variant in FOXI3 (p.Arg236Trp) as the cause of disease (logarithm of the odds = 3.33). We subsequently identified 6 individuals from 3 additional kindreds with microtia-CFM spectrum phenotypes harboring damaging variants in FOXI3, a regulator of ectodermal and neural crest development. Missense variants in the nuclear localization sequence were identified in cases with isolated microtia with aural atresia and found to affect subcellular localization of FOXI3. Loss of function variants were found in patients with microtia and mandibular hypoplasia (CFM), suggesting dosage sensitivity of FOXI3.
Conclusion:
Damaging variants in FOXI3 are the second most frequent genetic cause of CFM, causing 1% of all cases, including 13% of familial cases in our cohort.https://orcid.org/0000-0003-3822-7780https://orcid.org/0000-0002-0729-6866Revista Internacional - IndexadaA1N
Incidence of brain metastases in patients with early HER2-positive breast cancer receiving neoadjuvant chemotherapy with trastuzumab and pertuzumab
The addition of pertuzumab (P) to trastuzumab (H) and neoadjuvant chemotherapy (NAC) has decreased the risk of distant recurrence in early stage HER2-positive breast cancer. The incidence of brain metastases (BM) in patients who achieved pathological complete response (pCR) versus those who do not is unknown. In this study, we sought the incidence of BM in patients receiving HP-containing NAC as well as survival outcome. We reviewed the medical records of 526 early stage HER2-positive patients treated with an HP-based regimen at Memorial Sloan Kettering Cancer Center (MSKCC), between September 1, 2013 to November 1, 2019. The primary endpoint was to estimate the cumulative incidence of BM in pCR versus non-pCR patients; secondary endpoints included disease free-survival (DFS) and overall survival (OS). After a median follow-up of 3.2 years, 7 out of 286 patients with pCR had a BM while 5 out of 240 non-pCR patients had a BM. The 3-year DFS was significantly higher in the pCR group compared to non-pCR group (95% vs 91 %, p = 0.03) and the same trend was observed for overall survival. In our cohort, despite the better survival outcomes of patients who achieved pCR, we did not observe appreciable differences in the incidence of BM by pCR/non-pCR status. This finding suggests that the BM incidence could not be associated with pCR. Future trials with new small molecules able to cross the blood brain barrier should use more specific biomarkers rather than pCR for patients' selection
- …
