4,100 research outputs found
On Statistical Aspects of Qjets
The process by which jet algorithms construct jets and subjets is inherently
ambiguous and equally well motivated algorithms often return very different
answers. The Qjets procedure was introduced by the authors to account for this
ambiguity by considering many reconstructions of a jet at once, allowing one to
assign a weight to each interpretation of the jet. Employing these weighted
interpretations leads to an improvement in the statistical stability of many
measurements. Here we explore in detail the statistical properties of these
sets of weighted measurements and demonstrate how they can be used to improve
the reach of jet-based studies.Comment: 29 pages, 6 figures. References added, minor modification of the
text. This version to appear in JHE
Electronic impairment mitigation in optically multiplexed multicarrier systems
In order to improve the performance of optically multiplexed multicarrier systems with channel spacing equal to the symbol rate per carrier, we propose and systematically investigate an electronic signal processing technique to achieve near-interchannel crosstalk free and intersymbol-interference (ISI) free operation. We theoretically show that achieving perfect orthogonality between channels in these systems, together with ISI free operation as needed in generic communication systems, requires the shaping of the spectral profiles of not only the demultiplexing filter, but also the signal of each channel before demultiplexing. We develop a novel semianalytical method to quantitatively analyze the levels of residual crosstalk and ISI arising from nonideal system response in these systems. We show that by prefiltering the signal to ensure that the system impulse response before channel demultiplexing approaches the targeted condition, the residual crosstalk due to imperfect orthogonality can be significantly mitigated and the necessity for carrier phase control in single-quadrature format-based system can be relaxed. Further combining prefiltering and receiver-side postfiltering to adaptively trim the demultiplexing filter enhances the performance. The use of the combined digital signal processing (DSP) in coherent-detection quadrature phase-shifted keying (QPSK)-based optically multiplexed multicarrier system shows that this method outperforms conventional QPSK-based multicarrier system without DSP or with only receiver-side DSP, especially when the responses of the transmitter and the demultiplexing filter are not precisely designed and the sampling rate of the analogue-to-digital converter is not sufficiently high. In addition, the inclusion of ISI free operation, with this aspect similar to the reshaping method in conventional wavelength-division-multiplexing systems, allows the relaxation of the modulation bandwidth and chromatic dispersion compensation
Qjets: A Non-Deterministic Approach to Tree-Based Jet Substructure
Jet substructure is typically studied using clustering algorithms, such as
kT, which arrange the jets' constituents into trees. Instead of considering a
single tree per jet, we propose that multiple trees should be considered,
weighted by an appropriate metric. Then each jet in each event produces a
distribution for an observable, rather than a single value. Advantages of this
approach include: 1) observables have significantly increased statistical
stability; and, 2) new observables, such as the variance of the distribution,
provide new handles for signal and background discrimination. For example, we
find that employing a set of trees substantially reduces the observed
fluctuations in the pruned mass distribution, enhancing the likelihood of new
particle discovery for a given integrated luminosity. Furthermore, the
resulting pruned mass distributions for (background) QCD jets are found to be
substantially wider than that for (signal) jets with intrinsic mass scales,
e.g. jets containing a W decay. A cut on this width yields a substantial
enhancement in significance relative to a cut on the standard pruned jet mass
alone. In particular the luminosity needed for a given significance requirement
decreases by a factor of two relative to standard pruning.Comment: Minor changes to match journal versio
The faint-galaxy hosts of gamma-ray bursts
The observed redshifts and magnitudes of the host galaxies of gamma-ray
bursts (GRBs) are compared with the predictions of three basic GRB models, in
which the comoving rate density of GRBs is (1) proportional to the cosmic star
formation rate density, (2) proportional to the total integrated stellar
density and (3) constant. All three models make the assumption that at every
epoch the probability of a GRB occuring in a galaxy is proportional to that
galaxy's broad-band luminosity. No assumption is made that GRBs are standard
candles or even that their luminosity function is narrow. All three rate
density models are consistent with the observed GRB host galaxies to date,
although model (2) is slightly disfavored relative to the others. Models (1)
and (3) make very similar predictions for host galaxy magnitude and redshift
distributions; these models will be probably not be distinguished without
measurements of host-galaxy star-formation rates. The fraction of host galaxies
fainter than 28 mag may constrain the faint end of the galaxy luminosity
function at high redshift, or, if the fraction is observed to be low, may
suggest that the bursters are expelled from low-luminosity hosts. In all
models, the probability of finding a z<0.008 GRB among a sample of 11 GRBs is
less than 10^(-4), strongly suggesting that GRB 980425, if associated with
supernova 1998bw, represents a distinct class of GRBs.Comment: 7 pages, ApJ in press, revised to incorporate yet more new and
revised observational result
A survey of rabbit handling methods within the United Kingdom and the Republic of Ireland
Rabbits are commonly kept in a variety of settings, including homes, laboratories, and veterinary clinics. Despite the popularity of keeping this prey species, little research has investigated current methods of handling. The aim of this study was to examine the experience of caregivers (owners and keepers) in using five handling methods commonly referred to in books written for companion animal (pet) owners and veterinary and/or laboratory personnel. An online survey was completed by 2644 respondents, representing all three of these groups, and breeders. Data were acquired to determine sources that participants used to gain knowledge of different handling methods, the methods they used and for what purposes they used them, and their perceptions of any associated difficulties or welfare concerns. Results indicated that participants most frequently used the method of supporting a rabbit’s body against a person’s chest, which was considered the easiest and most welfare-friendly method of the handling methods explored. “Scruffing with rear support” was the least used method and was considered to be distressing and painful for the rabbit. As rabbits are a terrestrial prey species, being picked up is likely an innately stressful experience. Additional research is encouraged to explore the experience of rabbits during handling to identify methods that can be easily used with the fewest welfare compromises
Constraining Large Scale Structure Theories with the Cosmic Background Radiation
We review the relevant 10+ parameters associated with inflation and matter
content; the relation between LSS and primary and secondary CMB anisotropy
probes; COBE constraints on energy injection; current anisotropy band-powers
which strongly support the gravitational instability theory and suggest the
universe could not have reionized too early. We use Bayesian analysis methods
to determine what current CMB and CMB+LSS data imply for inflation-based
Gaussian fluctuations in tilted CDM, hCDM and oCDM model
sequences with age 11-15 Gyr, consisting of mixtures of baryons, cold (and
possibly hot) dark matter, vacuum energy, and curvature energy in open
cosmologies. For example, we find the slope of the initial spectrum is within
about 5% of the (preferred) scale invariant form when just the CMB data is
used, and for CDM when LSS data is combined with CMB; with both, a
nonzero value of is strongly preferred ( for a 13
Gyr sequence, similar to the value from SNIa). The CDM sequence prefers
, but is overall much less likely than the flat
sequence with CMB+LSS. We also review the rosy forecasts
of angular power spectra and parameter estimates from future balloon and
satellite experiments when foreground and systematic effects are ignored.Comment: 20 pages, LaTeX, 5 figures, 2 tables, uses rspublic.sty To appear in
Philosophical Transactions of the Royal Society of London A, 1998.
"Discussion Meeting on Large Scale Structure in the Universe," Royal Society,
London, March 1998. Text and colour figures also available at
ftp://ftp.cita.utoronto.ca/bond/roysoc9
Complex coastlines responding to climate change: do shoreline shapes reflect present forcing or “remember” the distant past?
A range of planform morphologies emerge along sandy coastlines as a function of offshore wave climate. It has been implicitly assumed that the morphological response time is rapid compared to the timescales of wave climate change, meaning that coastal morphologies simply reflect the extant wave climate. This assumption has been explored by focussing on the response of two distinctive morphological coastlines – flying spits and cuspate capes – to changing wave climates, using a coastline evolution model. Results indicate that antecedent conditions are important in determining the evolution of morphologies, and that sandy coastlines can demonstrate hysteresis behaviour. In particular, antecedent morphology is particularly important in the evolution of flying spits, with characteristic timescales of morphological adjustment on the order of centuries for large spits. Characteristic timescales vary with the square of aspect ratios of capes and spits; for spits, these timescales are an order of magnitude longer than for capes (centuries vs. decades). When wave climates change more slowly than the relevant characteristic timescales, coastlines are able to adjust in a quasi-equilibrium manner. Our results have important implications for the management of sandy coastlines where decisions may be implicitly and incorrectly based on the assumption that present-day coastlines are in equilibrium with current conditions
False Vacuum Inflation with a Quartic Potential
We consider a variant of Hybrid Inflation, where inflation is driven by two
interacting scalar fields, one of which has a `Mexican hat' potential and the
other a quartic potential. Given the appropriate initial conditions one of the
fields can be trapped in a false vacuum state, supported by couplings to the
other field. The energy of this vacuum can be used to drive inflation, which
ends when the vacuum decays to one of its true minima. Depending on parameters,
it is possible for inflation to proceed via two separate epochs, with the
potential temporarily steepening sufficiently to suspend inflation. We use
numerical simulations to analyse the possibilities, and emphasise the
shortcomings of the slow-roll approximation for analysing this scenario. We
also calculate the density perturbations produced, which can have a spectral
index greater than one.Comment: 10 pages, RevTeX 3.0, no figure
Exploring the sensitivities of crenulate-bay shorelines to wave climates using a new vector-based one-line model
We use a new exploratory model that simulates the evolution of sandy coastlines over decadal to centennial timescales to examine the behavior of crenulate-shaped bays forced by differing directional wave climates. The model represents the coastline as a vector in a Cartesian reference frame, and the shoreface evolves relative to its local orientation, allowing simulation of coasts with high planform-curvature. Shoreline change is driven by gradients in alongshore transport following newly developed algorithms that facilitate dealing with high planform-curvature coastlines. We simulated the evolution of bays from a straight coast between two fixed headlands with no external sediment inputs to an equilibrium condition (zero net alongshore sediment flux) under an ensemble of directional wave climate conditions. We find that planform bay relief increases with obliquity of the mean wave direction, and decreases with the spread of wave directions. Varying bay size over 2 orders of magnitude (0.1–16 km), the model predicts bay shape to be independent of bay size. The time taken for modeled bays to attain equilibrium was found to scale with the square of the distance between headlands, so that, all else being equal, small bays are likely to respond to and recover from perturbations more rapidly (over just a few years) compared to large bays (hundreds of years). Empirical expressions predicting bay shape may be misleading if used to predict their behavior over planning timescales
- …
