3,624 research outputs found
Collaborative CoVE Projects for Digital Design in FE Teaching and Learning
The Batley School of Art & Design CoVE in Digital Design is a catalyst for collaboration between local schools, colleges and the creative industries. The digital CoVE bridges a regional skills gap in learning and teaching digital imaging technology. The paper discusses two aspects of current FE learning and teaching development. Firstly, the way in which the CoVE digital resource has impacted on the level 2 and 3 student learning experience within the college. Secondly, a case study outlines the fashion and digital textiles design collaboration between London College of Fashion, Chesterfield College and Batley School of Art & Design CoVe’s. The case study provides details of the CoVE project setup and illustrates student and academic experiences during the project
Security models for trusting network appliances
A significant characteristic of pervasive computing is the need for secure interactions between highly mobile entities and the services in their environment. Moreover,these decentralised systems are also characterised by partial views over the state of the global environment, implying that we cannot guarantee verification of the properties of the mobile entity entering an unfamiliar domain. Secure in this context encompasses both the need for cryptographic security and the need for trust, on the part of both parties, that the interaction is functioning as expected. In this paper we make a broad assumption that trust and cryptographic security can be considered as orthogonal concerns (i.e. cryptographic measures do not ensure transmission of correct information). We assume the existence of reliable encryption techniques and focus on the characteristics of a model that supports the management of the trust relationships between two devices during ad-hoc interactions
A Compact Representation of Histopathology Images using Digital Stain Separation & Frequency-Based Encoded Local Projections
In recent years, histopathology images have been increasingly used as a
diagnostic tool in the medical field. The process of accurately diagnosing a
biopsy sample requires significant expertise in the field, and as such can be
time-consuming and is prone to uncertainty and error. With the advent of
digital pathology, using image recognition systems to highlight problem areas
or locate similar images can aid pathologists in making quick and accurate
diagnoses. In this paper, we specifically consider the encoded local
projections (ELP) algorithm, which has previously shown some success as a tool
for classification and recognition of histopathology images. We build on the
success of the ELP algorithm as a means for image classification and
recognition by proposing a modified algorithm which captures the local
frequency information of the image. The proposed algorithm estimates local
frequencies by quantifying the changes in multiple projections in local windows
of greyscale images. By doing so we remove the need to store the full
projections, thus significantly reducing the histogram size, and decreasing
computation time for image retrieval and classification tasks. Furthermore, we
investigate the effectiveness of applying our method to histopathology images
which have been digitally separated into their hematoxylin and eosin stain
components. The proposed algorithm is tested on the publicly available invasive
ductal carcinoma (IDC) data set. The histograms are used to train an SVM to
classify the data. The experiments showed that the proposed method outperforms
the original ELP algorithm in image retrieval tasks. On classification tasks,
the results are found to be comparable to state-of-the-art deep learning
methods and better than many handcrafted features from the literature.Comment: Accepted for publication in the International Conference on Image
Analysis and Recognition (ICIAR 2019
Trust dynamics for collaborative global computing
Recent advances in networking technology have increased the potential for dynamic enterprise collaborations between an open set of entities on a global scale. The security of these collaborations is a major concern, and requires novel approaches suited to this new environment to be developed. Trust management appears to be a promising approach. Due to the dynamic nature of these collaborations,dynamism in the formation, evolution and exploitation of trust is essential. In this paper we explore the properties of trust dynamics in this context. Trust is formed and evolves according to personal experience and recommendations. The properties of trust dynamics are expressed through a formal model of trust. Specific examples, based on an e-purse application scenario are used to demonstrate these properties
Evolution of Web Services in EOSDIS: Search and Order Metadata Registry (ECHO)
During 2005 through 2008, NASA defined and implemented a major evolutionary change in it Earth Observing system Data and Information System (EOSDIS) to modernize its capabilities. This implementation was based on a vision for 2015 developed during 2005. The EOSDIS 2015 Vision emphasizes increased end-to-end data system efficiency and operability; increased data usability; improved support for end users; and decreased operations costs. One key feature of the Evolution plan was achieving higher operational maturity (ingest, reconciliation, search and order, performance, error handling) for the NASA s Earth Observing System Clearinghouse (ECHO). The ECHO system is an operational metadata registry through which the scientific community can easily discover and exchange NASA's Earth science data and services. ECHO contains metadata for 2,726 data collections comprising over 87 million individual data granules and 34 million browse images, consisting of NASA s EOSDIS Data Centers and the United States Geological Survey's Landsat Project holdings. ECHO is a middleware component based on a Service Oriented Architecture (SOA). The system is comprised of a set of infrastructure services that enable the fundamental SOA functions: publish, discover, and access Earth science resources. It also provides additional services such as user management, data access control, and order management. The ECHO system has a data registry and a services registry. The data registry enables organizations to publish EOS and other Earth-science related data holdings to a common metadata model. These holdings are described through metadata in terms of datasets (types of data) and granules (specific data items of those types). ECHO also supports browse images, which provide a visual representation of the data. The published metadata can be mapped to and from existing standards (e.g., FGDC, ISO 19115). With ECHO, users can find the metadata stored in the data registry and then access the data either directly online or through a brokered order to the data archive organization. ECHO stores metadata from a variety of science disciplines and domains, including Climate Variability and Change, Carbon Cycle and Ecosystems, Earth Surface and Interior, Atmospheric Composition, Weather, and Water and Energy Cycle. ECHO also has a services registry for community-developed search services and data services. ECHO provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources (data, service and clients). In their native state, these data, service and client resources are not necessarily targeted for use beyond their original mission. However, with the proper interoperability mechanisms, users of these resources can expand their value, by accessing, combining and applying them in unforeseen ways
Developing know-how for the improvement and sustainable management of teak genetic resources
The project had the following objectives:
To trace and quantify genetic diversity of teak within its natural range, DNA markers were used to assay the current distribution of genetic diversity within and between
populations, investigate its mating system and establish historical migration patterns.
To evaluate the amount of contemporary gene flow through pollen and seed, hypervariable microsatellite DNA markers have been developed for parentage analysis. The molecular work was complemented by field observations of teak flower
insect pollinators.
To assess the influence of human disturbance, the genetic diversity in teak forests that have been undisturbed, lightly or heavily disturbed have been assessed and compared for both population genetic diversity and contemporary gene flow processes
Magic angle spinning (MAS) NMR linewidths in the presence of solid-state dynamics
In solid-state NMR, the magic angle spinning (MAS) technique fails to suppress anisotropic spin interactions fully if reorientational dynamics are present, resulting in a decay of the rotational-echo train in the time-domain signal. We show that a simple analytical model can be used to quantify this linebroadening effect as a function of the MAS frequency, reorientational rate constant, and magnitude of the inhomogeneous anisotropic broadening. We compare this model with other theoretical approaches and with exact computer simulations, and show how it may be used to estimate rate constants from experimental NMR data
- …
