30,237 research outputs found

    Determination of ferroelectric compositional phase transition using novel virtual crystal approach

    Full text link
    We employ a new method for studying compositionally disordered ferroelectric oxides. This method is based on the virtual crystal approximation (VCA), in which two or more component potentials are averaged into a composite atomic potential. In our method, we construct a virtual atom with the correctly averaged atomic size and atomic eigenvalues. We have used our new method to study the composition dependent phase transition in Pb(Zr_{1-x}Ti_x)O_3 lying between x=0.5 and x=0.4. We correctly predict the experimentally determined phase transition from the tetragonal phase to a low-temperature rhombohedral phase between these two compositions.Comment: 7 pages, 2 figures, Proceedings for Fundamental Physics of Ferroelectrics, Aspen, CO February 13-20, 200

    Small Solutions to the Large Telescope Problem: A Massively Replicated MEMS Spectrograph

    Full text link
    In traditional seeing-limited observations the spectrograph aperture scales with telescope aperture, driving sizes and costs to enormous proportions. We propose a new solution to the seeing-limited spectrograph problem. A massively fiber-sliced configuration feeds a set of small diffraction-limited spectrographs. We present a prototype, tunable, J-band, diffraction grating, designed specifically for Astronomical applications: The grating sits at the heart of a spectrograph, no bigger than a few inches on a side. Throughput requirements dictate using tens-of-thousands of spectrographs on a single 10 to 30 meter telescope. A full system would cost significantly less than typical instruments on 10m or 30m telescopes.Comment: 9 pages, 5 figures, presented at SPIE Astronomical Telescopes and Instrumentation, 23 - 28 June 2008, Marseille, France. See http://www.ucolick.org/~npk/MEMS for video

    Cross-Platform Presentation of Interactive Volumetric Imagery

    Get PDF
    Volume data is useful across many disciplines, not just medicine. Thus, it is very important that researchers have a simple and lightweight method of sharing and reproducing such volumetric data. In this paper, we explore some of the challenges associated with volume rendering, both from a classical sense and from the context of Web3D technologies. We describe and evaluate the pro- posed X3D Volume Rendering Component and its associated styles for their suitability in the visualization of several types of image data. Additionally, we examine the ability for a minimal X3D node set to capture provenance and semantic information from outside ontologies in metadata and integrate it with the scene graph

    Describing the impact of health research: a Research Impact Framework.

    Get PDF
    BACKGROUND: Researchers are increasingly required to describe the impact of their work, e.g. in grant proposals, project reports, press releases and research assessment exercises. Specialised impact assessment studies can be difficult to replicate and may require resources and skills not available to individual researchers. Researchers are often hard-pressed to identify and describe research impacts and ad hoc accounts do not facilitate comparison across time or projects. METHODS: The Research Impact Framework was developed by identifying potential areas of health research impact from the research impact assessment literature and based on research assessment criteria, for example, as set out by the UK Research Assessment Exercise panels. A prototype of the framework was used to guide an analysis of the impact of selected research projects at the London School of Hygiene and Tropical Medicine. Additional areas of impact were identified in the process and researchers also provided feedback on which descriptive categories they thought were useful and valid vis-à-vis the nature and impact of their work. RESULTS: We identified four broad areas of impact: I. Research-related impacts; II. Policy impacts; III. Service impacts: health and intersectoral and IV. Societal impacts. Within each of these areas, further descriptive categories were identified. For example, the nature of research impact on policy can be described using the following categorisation, put forward by Weiss: Instrumental use where research findings drive policy-making; Mobilisation of support where research provides support for policy proposals; Conceptual use where research influences the concepts and language of policy deliberations and Redefining/wider influence where research leads to rethinking and changing established practices and beliefs. CONCLUSION: Researchers, while initially sceptical, found that the Research Impact Framework provided prompts and descriptive categories that helped them systematically identify a range of specific and verifiable impacts related to their work (compared to ad hoc approaches they had previously used). The framework could also help researchers think through implementation strategies and identify unintended or harmful effects. The standardised structure of the framework facilitates comparison of research impacts across projects and time, which is useful from analytical, management and assessment perspectives

    Pseudomonas aeruginosa can be detected in a polymicrobial competition model using impedance spectroscopy with a novel biosensor

    Get PDF
    Electrochemical Impedance Spectroscopy (EIS) is a powerful technique that can be used to elicit information about an electrode interface. In this article, we highlight six principal processes by which the presence of microorganisms can affect impedance and show how one of these - the production of electroactive metabolites - changes the impedance signature of culture media containing Pseudomonas aeruginosa. EIS, was used in conjunction with a low cost screen printed carbon sensor to detect the presence of P. aeruginosa when grown in isolation or as part of a polymicrobial infection with Staphylococcus aureus. By comparing the electrode to a starting measurement, we were able to identify an impedance signature characteristic of P. aeruginosa. Furthermore, we are able to show that one of the changes in the impedance signature is due to pyocyanin and associated phenazine compounds. The findings of this study indicate that it might be possible to develop a low cost sensor for the detection of P. aeruginosa in important point of care diagnostic applications. In particular, we suggest that a development of the device described here could be used in a polymicrobial clinical sample such as sputum from a CF patient to detect P. aeruginosa
    corecore