1,317 research outputs found
A network traffic flow model for motorway and urban highways
The research reported in this paper develops a network level traffic flow model (NTFM) which is applicable for both motorway and urban roads. It forecasts the traffic flow rates, queue propagation at the junctions and travel delays through the network. NTFM uses sub-models associated with all road and junction types which comprise the highway. The flow at any one part of the network is obviously very dependent upon the flows at all other parts of the network. To predict the two-way traffic flow in NTFM, an iterative simulation method is executed to generate the evolution of dependent traffic flows and queues. To demonstrate the capability of the model it is applied to a small case study network and a local Loughborough-Nottingham highway network. The results indicate that NTFM is capable of identifying the relationship between traffic flows and capturing traffic phenomena such as queue dynamics. By introducing a reduced flow rate on links of the network then the effects of strategies employed to carry out roadworks can be mimicked
Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution
It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons (“exon-intron marking”), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing
Planet Populations as a Function of Stellar Properties
Exoplanets around different types of stars provide a window into the diverse
environments in which planets form. This chapter describes the observed
relations between exoplanet populations and stellar properties and how they
connect to planet formation in protoplanetary disks. Giant planets occur more
frequently around more metal-rich and more massive stars. These findings
support the core accretion theory of planet formation, in which the cores of
giant planets form more rapidly in more metal-rich and more massive
protoplanetary disks. Smaller planets, those with sizes roughly between Earth
and Neptune, exhibit different scaling relations with stellar properties. These
planets are found around stars with a wide range of metallicities and occur
more frequently around lower mass stars. This indicates that planet formation
takes place in a wide range of environments, yet it is not clear why planets
form more efficiently around low mass stars. Going forward, exoplanet surveys
targeting M dwarfs will characterize the exoplanet population around the lowest
mass stars. In combination with ongoing stellar characterization, this will
help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet
Possible origins of macroscopic left-right asymmetry in organisms
I consider the microscopic mechanisms by which a particular left-right (L/R)
asymmetry is generated at the organism level from the microscopic handedness of
cytoskeletal molecules. In light of a fundamental symmetry principle, the
typical pattern-formation mechanisms of diffusion plus regulation cannot
implement the "right-hand rule"; at the microscopic level, the cell's
cytoskeleton of chiral filaments seems always to be involved, usually in
collective states driven by polymerization forces or molecular motors. It seems
particularly easy for handedness to emerge in a shear or rotation in the
background of an effectively two-dimensional system, such as the cell membrane
or a layer of cells, as this requires no pre-existing axis apart from the layer
normal. I detail a scenario involving actin/myosin layers in snails and in C.
elegans, and also one about the microtubule layer in plant cells. I also survey
the other examples that I am aware of, such as the emergence of handedness such
as the emergence of handedness in neurons, in eukaryote cell motility, and in
non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue.
Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in
Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec
Modeling Slope Instability as Shear Rupture Propagation in a Saturated Porous Medium
When a region of intense shear in a slope is much thinner than other relevant geometric lengths, this shear failure may be approximated as localized slip, as in faulting, with strength determined by frictional properties of the sediment and effective stress normal to the failure surface. Peak and residual frictional strengths of submarine sediments indicate critical slope angles well above those of most submarine slopes—in contradiction to abundant failures. Because deformation of sediments is governed by effective stress, processes affecting pore pressures are a means of strength reduction. However, common methods of exami ning slope stability neglect dynamically variable pore pressure during failure. We examine elastic-plastic models of the capped Drucker-Prager type and derive approximate equations governing pore pressure about a slip surface when the adjacent material may deform plastically. In the process we identify an elastic-plastic hydraulic diffusivity with an evolving permeability and plastic storage term analogous to the elastic term of traditional poroelasticity. We also examine their application to a dynamically propagating subsurface rupture and find indications of downslope directivity.Earth and Planetary SciencesEngineering and Applied Science
Application of network traffic flow model to road maintenance
The study shows how the evolution of two-way traffic flows on a local highway network can be predicted over time using a network-level traffic flow model (NTFM) to model both urban and motorway road networks. After a brief review of the main principles of the NTFM and its associated sub-models, the paper describes how a maintenance worksite can be modelled using a roadwork-node sub-model and a network solution routine in the NTFM. In order to model the two-way traffic flow in the road network, an iterative simulation method is used to generate the evolution of dependent traffic flows and queues. The NTFM has been applied to model the traffic characteristics and the effects of maintenance activities on the local Loughborough–Nottingham highway network. The study has demonstrated that the methodology is useful in selecting various worksite arrangements in order to reduce the effects of maintenance on road users
Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers
We present a review of the interplay between the evolution of circumstellar
disks and the formation of planets, both from the perspective of theoretical
models and dedicated observations. Based on this, we identify and discuss
fundamental questions concerning the formation and evolution of circumstellar
disks and planets which can be addressed in the near future with optical and
infrared long-baseline interferometers. Furthermore, the importance of
complementary observations with long-baseline (sub)millimeter interferometers
and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics
Review"; The final publication is available at http://www.springerlink.co
Galaxy And Mass Assembly (GAMA): mass-size relations of z < 0.1 galaxies subdivided by Sersic index, colour and morphology
We use data from the Galaxy And Mass Assembly (GAMA) survey in the redshift range 0.01 < z < 0.1 (8399 galaxies in g to Ks bands) to derive the stellar mass–half-light radius relations for various divisions of ‘early’- and ‘late’-type samples. We find that the choice of division between early and late (i.e. colour, shape, morphology) is not particularly critical; however, the adopted mass limits and sample selections (i.e. the careful rejection of outliers and use of robust fitting methods) are important. In particular, we note that for samples extending to low stellar mass limits (<10 10 M ⊙ ) the Sérsic index bimodality, evident for high-mass systems, becomes less distinct and no-longer acts as a reliable separator of early- and late-type systems. The final set of stellar mass–half-light radius relations are reported for a variety of galaxy population subsets in 10 bands (ugrizZY JHKs) and are intended to provide a comprehensive low-z benchmark for the many ongoing high-z studies. Exploring the variation of the stellar mass–half-light radius relations with wavelength, we confirm earlier findings that galaxies appear more compact at longer wavelengths albeit at a smaller level than previously noted: at 10 10 M ⊙ both spiral systems and ellipticals show a decrease in size of 13 per cent from g to Ks (which is near linear in log wavelength). Finally, we note that the sizes used in this work are derived from 2D Sérsic light profile fitting (using galfit3), i.e. elliptical semimajor half-light radii, improving on earlier low-z benchmarks based on circular apertures
Neuropsychiatric symptoms following metal-on-metal implant failure with cobalt and chromium toxicity
Background: There were at least 31,171 metal-on-metal (MoM) hip implants in the UK between 2003 and 2011. Some of these were subject to failure and widescale recalls and revisions followed. Method This is a presentation of ten cases (mean age 60 years) where we evaluated neuropsychiatric morbidity following metal-on-metal hip implant failure and revision. Implants were ASR total hip replacement (acetabular implant, taper sleeve adaptor and unipolar femoral implants) performed between 2005 and 2009. This case series describes, for the first time, neuropsychiatric complications after revision where there has been cobalt and chromium toxicity. Results Pre-revision surgery, nine patients had toxic levels of chromium and cobalt (mean level chromium 338 nmol/l, mean cobalt 669.4 nmol/l). Depression assessment showed 9 of 9 respondents fulfilled the BDI criteria for depression and 3 of these were being treated. 7 of 9 patients showing short term memory deficit with mean mini mental state examination score of 24.2. The normal population mean MMSE for this group would be expected to be 28 with <25 indicating possible dementia. Conclusions We found neurocognitive and depressive deficits after cobalt and chromium metallosis following MoM implant failure. Larger studies of neurocognitive effects are indicated in this group. There may be implications for public health
- …
