28,254 research outputs found
Interparticle interactions:Energy potentials, energy transfer, and nanoscale mechanical motion in response to optical radiation
In the interactions between particles of material with slightly different electronic levels, unusually large shifts in the pair potential can result from photoexcitation, and on subsequent electronic excitation transfer. To elicit these phenomena, it is necessary to understand the fundamental differences between a variety of optical properties deriving from dispersion interactions, and processes such as resonance energy transfer that occur under laser irradiance. This helps dispel some confusion in the recent literature. By developing and interpreting the theory at a deeper level, one can anticipate that in suitable systems, light absorption and energy transfer will be accompanied by significant displacements in interparticle separation, leading to nanoscale mechanical motion
Properties of Non-Abelian Fractional Quantum Hall States at Filling
We compute the physical properties of non-Abelian Fractional Quantum Hall
(FQH) states described by Jack polynomials at general filling
. For , these states are identical to the
Read-Rezayi parafermions, whereas for they represent new FQH states. The
states, multiplied by a Vandermonde determinant, are a non-Abelian
alternative construction of states at fermionic filling . We
obtain the thermal Hall coefficient, the quantum dimensions, the electron
scaling exponent, and show that the non-Abelian quasihole has a well-defined
propagator falling off with the distance. The clustering properties of the Jack
polynomials, provide a strong indication that the states with can be
obtained as correlators of fields of \emph{non-unitary} conformal field
theories, but the CFT-FQH connection fails when invoked to compute physical
properties such as thermal Hall coefficient or, more importantly, the quasihole
propagator. The quasihole wavefuntion, when written as a coherent state
representation of Jack polynomials, has an identical structure for \emph{all}
non-Abelian states at filling .Comment: 2 figure
On the nature of long range electronic coupling in a medium: Distance and orientational dependence for chromophores in molecular aggregates
Sensitive imaging of electromagnetic fields with paramagnetic polar molecules
We propose a method for sensitive parallel detection of low-frequency
electromagnetic fields based on the fine structure interactions in paramagnetic
polar molecules. Compared to the recently implemented scheme employing
ultracold Rb atoms [B{\"o}hi \textit{et al.}, Appl. Phys. Lett.
\textbf{97}, 051101 (2010)], the technique based on molecules offers a 100-fold
higher sensitivity, the possibility to measure both the electric and magnetic
field components, and a probe of a wide range of frequencies from the dc limit
to the THz regime
Equation of state for hard sphere fluids with and without Kac tails
In this note, we propose a simple derivation of the one dimensional hard rod
equation of state, with and without a Kac tail (appended long range and weak
potential). The case of hard spheres in higher dimension is also addressed and
it is shown there that our arguments --which avoid any mathematical
complication-- allow to recover the virial form of the equation of state in a
direct way.Comment: pedagogical pape
Generalized Clustering Conditions of Jack Polynomials at Negative Jack Parameter
We present several conjectures on the behavior and clustering properties of
Jack polynomials at \emph{negative} parameter , of
partitions that violate the admissibility rule of Feigin \emph{et.
al.} [\onlinecite{feigin2002}]. We find that "highest weight" Jack polynomials
of specific partitions represent the minimum degree polynomials in
variables that vanish when distinct clusters of particles are formed,
with and positive integers. Explicit counting formulas are conjectured.
The generalized clustering conditions are useful in a forthcoming description
of fractional quantum Hall quasiparticles.Comment: 12 page
Laser-controlled fluorescence in two-level systems
The ability to modify the character of fluorescent emission by a laser-controlled, optically nonlinear process has recently been shown theoretically feasible, and several possible applications have already been identified. In operation, a pulse of off-resonant probe laser beam, of sufficient intensity, is applied to a system exhibiting fluorescence, during the interval of excited- state decay following the initial excitation. The result is a rate of decay that can be controllably modified, the associated changes in fluorescence behavior affording new, chemically specific information. In this paper, a two-level emission model is employed in the further analysis of this all-optical process; the results should prove especially relevant to the analysis and imaging of physical systems employing fluorescent markers, these ranging from quantum dots to green fluorescence protein. Expressions are presented for the laser-controlled fluorescence anisotropy exhibited by samples in which the fluorophores are randomly oriented. It is also shown that, in systems with suitably configured electronic levels and symmetry properties, fluorescence emission can be produced from energy levels that would normally decay nonradiatively. © 2010 American Chemical Society
Steady-state MreB helices inside bacteria: dynamics without motors
Within individual bacteria, we combine force-dependent polymerization
dynamics of individual MreB protofilaments with an elastic model of
protofilament bundles buckled into helical configurations. We use variational
techniques and stochastic simulations to relate the pitch of the MreB helix,
the total abundance of MreB, and the number of protofilaments. By comparing our
simulations with mean-field calculations, we find that stochastic fluctuations
are significant. We examine the quasi-static evolution of the helical pitch
with cell growth, as well as timescales of helix turnover and denovo
establishment. We find that while the body of a polarized MreB helix treadmills
towards its slow-growing end, the fast-growing tips of laterally associated
protofilaments move towards the opposite fast-growing end of the MreB helix.
This offers a possible mechanism for targeted polar localization without
cytoplasmic motor proteins.Comment: 7 figures, 1 tabl
Resonance energy transfer: The unified theory revisited
Resonanceenergy transfer (RET) is the principal mechanism for the intermolecular or intramolecular redistribution of electronic energy following molecular excitation. In terms of fundamental quantum interactions, the process is properly described in terms of a virtual photon transit between the pre-excited donor and a lower energy (usually ground-state) acceptor. The detailed quantum amplitude for RET is calculated by molecular quantum electrodynamical techniques with the observable, the transfer rate, derived via application of the Fermi golden rule. In the treatment reported here, recently devised state-sequence techniques and a novel calculational protocol is applied to RET and shown to circumvent problems associated with the usual method. The second-rank tensor describing virtual photon behavior evolves from a Green’s function solution to the Helmholtz equation, and special functions are employed to realize the coupling tensor. The method is used to derive a new result for energy transfer systems sensitive to both magnetic- and electric-dipole transitions. The ensuing result is compared to that of pure electric-dipole–electric-dipole coupling and is analyzed with regard to acceptable transfer separations. Systems are proposed where the electric-dipole–magnetic-dipole term is the leading contribution to the overall rate
- …
