2,226 research outputs found
SUMO chain formation is required for response to replication arrest in S. pombe
SUMO is a ubiquitin-like protein that is post-translationally attached to one or more lysine residues on target proteins. Despite having only 18% sequence identity with ubiquitin, SUMO contains the conserved betabetaalphabetabetaalphabeta fold present in ubiquitin. However, SUMO differs from ubiquitin in having an extended N-terminus. In S. pombe the N-terminus of SUMO/Pmt3 is significantly longer than those of SUMO in S. cerevisiae, human and Drosophila. Here we investigate the role of this N-terminal region. We have used two dimensional gel electrophoresis to demonstrate that S. pombe SUMO/Pmt3 is phosphorylated, and that this occurs on serine residues at the extreme N-terminus of the protein. Mutation of these residues (in pmt3-1) results in a dramatic reduction in both the levels of high Mr SUMO-containing species and of total SUMO/Pmt3, indicating that phosphorylation of SUMO/Pmt3 is required for its stability. Despite the significant reduction in high Mr SUMO-containing species, pmt3-1 cells do not display an aberrant cell morphology or sensitivity to genotoxins or stress. Additionally, we demonstrate that two lysine residues in the N-terminus of S. pombe SUMO/Pmt3 (K14 and K30) can act as acceptor sites for SUMO chain formation in vitro. Inability to form SUMO chains results in aberrant cell and nuclear morphologies, including stretched and fragmented chromatin. SUMO chain mutants are sensitive to the DNA synthesis inhibitor, hydroxyurea (HU), but not to other genotoxins, such as UV, MMS or CPT. This implies a role for SUMO chains in the response to replication arrest in S. pomb
Crack-Like Processes Governing the Onset of Frictional Slip
We perform real-time measurements of the net contact area between two blocks
of like material at the onset of frictional slip. We show that the process of
interface detachment, which immediately precedes the inception of frictional
sliding, is governed by three different types of detachment fronts. These
crack-like detachment fronts differ by both their propagation velocities and by
the amount of net contact surface reduction caused by their passage. The most
rapid fronts propagate at intersonic velocities but generate a negligible
reduction in contact area across the interface. Sub-Rayleigh fronts are
crack-like modes which propagate at velocities up to the Rayleigh wave speed,
VR, and give rise to an approximate 10% reduction in net contact area. The most
efficient contact area reduction (~20%) is precipitated by the passage of slow
detachment fronts. These fronts propagate at anomalously slow velocities, which
are over an order of magnitude lower than VR yet orders of magnitude higher
than other characteristic velocity scales such as either slip or loading
velocities. Slow fronts are generated, in conjunction with intersonic fronts,
by the sudden arrest of sub-Rayleigh fronts. No overall sliding of the
interface occurs until either of the slower two fronts traverses the entire
interface, and motion at the leading edge of the interface is initiated. Slip
at the trailing edge of the interface accompanies the motion of both the slow
and sub-Rayleigh fronts. We might expect these modes to be important in both
fault nucleation and earthquake dynamics.Comment: 19 page, 5 figures, to appear in International Journal of Fractur
Susceptibility of hamsters to clostridium difficile isolates of differing toxinotype
Clostridium difficile is the most commonly associated cause of antibiotic associated disease (AAD), which caused ~21,000 cases of AAD in 2011 in the U.K. alone. The golden Syrian hamster model of CDI is an acute model displaying many of the clinical features of C. difficile disease. Using this model we characterised three clinical strains of C. difficile, all differing in toxinotype; CD1342 (PaLoc negative), M68 (toxinotype VIII) and BI-7 (toxinotype III). The naturally occurring non-toxic strain colonised all hamsters within 1-day post challenge (d.p.c.) with high-levels of spores being shed in the faeces of animals that appeared well throughout the entire experiment. However, some changes including increased neutrophil influx and unclotted red blood cells were observed at early time points despite the fact that the known C. difficile toxins (TcdA, TcdB and CDT) are absent from the genome. In contrast, hamsters challenged with strain M68 resulted in a 45% mortality rate, with those that survived challenge remaining highly colonised. It is currently unclear why some hamsters survive infection, as bacterial and toxin levels and histology scores were similar to those culled at a similar time-point. Hamsters challenged with strain BI-7 resulted in a rapid fatal infection in 100% of the hamsters approximately 26 hr post challenge. Severe caecal pathology, including transmural neutrophil infiltrates and extensive submucosal damage correlated with high levels of toxin measured in gut filtrates ex vivo. These data describes the infection kinetics and disease outcomes of 3 clinical C. difficile isolates differing in toxin carriage and provides additional insights to the role of each toxin in disease progression
Quantised Vortices in an Exciton-Polariton Fluid
One of the most striking quantum effects in a low temperature interacting
Bose gas is superfluidity. First observed in liquid 4He, this phenomenon has
been intensively studied in a variety of systems for its amazing features such
as the persistence of superflows and the quantization of the angular momentum
of vortices. The achievement of Bose-Einstein condensation (BEC) in dilute
atomic gases provided an exceptional opportunity to observe and study
superfluidity in an extremely clean and controlled environment. In the solid
state, Bose-Einstein condensation of exciton polaritons has now been reported
several times. Polaritons are strongly interacting light-matter
quasi-particles, naturally occurring in semiconductor microcavities in the
strong coupling regime and constitute a very interesting example of composite
bosons. Even though pioneering experiments have recently addressed the
propagation of a fluid of coherent polaritons, still no conclusive evidence is
yet available of its superfluid nature. In the present Letter, we report the
observation of spontaneous formation of pinned quantised vortices in the
Bose-condensed phase of a polariton fluid by means of phase and amplitude
imaging. Theoretical insight into the possible origin of such vortices is
presented in terms of a generalised Gross-Pitaevskii equation. The implications
of our observations concerning the superfluid nature of the non-equilibrium
polariton fluid are finally discussed.Comment: 14 pages, 4 figure
Sculpting oscillators with light within a nonlinear quantum fluid
Seeing macroscopic quantum states directly remains an elusive goal. Particles
with boson symmetry can condense into such quantum fluids producing rich
physical phenomena as well as proven potential for interferometric devices
[1-10]. However direct imaging of such quantum states is only fleetingly
possible in high-vacuum ultracold atomic condensates, and not in
superconductors. Recent condensation of solid state polariton quasiparticles,
built from mixing semiconductor excitons with microcavity photons, offers
monolithic devices capable of supporting room temperature quantum states
[11-14] that exhibit superfluid behaviour [15,16]. Here we use microcavities on
a semiconductor chip supporting two-dimensional polariton condensates to
directly visualise the formation of a spontaneously oscillating quantum fluid.
This system is created on the fly by injecting polaritons at two or more
spatially-separated pump spots. Although oscillating at tuneable THz-scale
frequencies, a simple optical microscope can be used to directly image their
stable archetypal quantum oscillator wavefunctions in real space. The
self-repulsion of polaritons provides a solid state quasiparticle that is so
nonlinear as to modify its own potential. Interference in time and space
reveals the condensate wavepackets arise from non-equilibrium solitons. Control
of such polariton condensate wavepackets demonstrates great potential for
integrated semiconductor-based condensate devices.Comment: accepted in Nature Physic
Distributed Ship Service Systems Architecture in The Early Stages of Designing Physically Large and Complex Vessels: The Submarine Case
In the initial sizing of complex vessels, where recourse to type ship design can be overly restrictive, one crucial set of design features has traditionally been poorly addressed. This is the estimation of the weight and space demands of the various Distributed Ship Services Systems (DS3), which include different types of commodity services beyond those primarily associated with the ship propulsion system. In general, naval vessels are typified by extensive and densely engineered DS3, with the modern naval submarine being at the extreme of dense outfitting. Despite this, the ability for the concept designer to consider the impact of different configurations for the DS3 arrangements has not been readily addressed in concept design. This paper describes ongoing work at University College London (UCL) to develop a novel DS3 synthesis approach utilising computer tools, such as Paramarine™, MATLAB®, and CPLEX®, which provide the concept designer with a quantitative network-based evaluation to enable DS3 space and weight inputs early in the design process. The results of applying the approach to a conventional submarine case study indicate quantitative insights into early DS3 sizing can be obtained. The paper concludes with likely developments in concluding the research study
Operational Matrix Framework for Energy Balance Analysis for Early Stage Design of Complex Vessels
Considering vital ship systems or distributed ship service systems at the early stage of complex vessels is a challenging task. The recent UCL Network Block Approach aimed to enable ship designer to address ship systems design synthesis simultaneously as a logical network using MATLAB with a CPLEX Toolbox in MATLAB and representative piping, cabling, and trunking routings on the physical description of the ship using a proven CASD tool PARAMARINESURFCON. This was possible due to adopting a set of frameworks, as part of this comprehensive approach. The paper presents one of the frameworks: the Operational Matrix,
to formulate distributed ship service systems network in the early stage design of complex vessels. The application of the framework could take on many forms and can be manipulated to suit a specific distributed ship service system’s design. In this paper, a tutorial is given, leading from the simplest application of the Operational Matrix Framework to an example of a complex Operational Matrix application for the 3D multiplex submarine systems problem. The use of the proposed Operational Matrix Framework is shown to reveal the relationship between objective functions, constraints, bounds, and solutions of that linear programming formulation. The
Operational Matrix Framework can enable the solvers (CPLEX Toolbox in MATLAB) to be very efficient in advancing early stage ship design applications. The Framework could be developed further for investigating the analysis of energy balances for new systems to achieve net zero energy demands for future naval vesselsConsidering vital ship systems or distributed ship service systems at the early stage of complex vessels is a challenging task. The recent UCL Network Block Approach aimed to enable ship designer to address ship systems design synthesis simultaneously as a logical network using MATLAB with a CPLEX Toolbox in MATLAB and representative piping, cabling, and trunking routings on the physical description of the ship using a proven CASD tool PARAMARINESURFCON. This was possible due to adopting a set of frameworks, as part of this comprehensive approach. The paper presents one of the frameworks: the Operational Matrix,
to formulate distributed ship service systems network in the early stage design of complex vessels. The application of the framework could take on many forms and can be manipulated to suit a specific distributed ship service system’s design. In this paper, a tutorial is given, leading from the simplest application of the Operational Matrix Framework to an example of a complex Operational Matrix application for the 3D multiplex submarine systems problem. The use of the proposed Operational Matrix Framework is shown to reveal the relationship between objective functions, constraints, bounds, and solutions of that linear programming formulation. The
Operational Matrix Framework can enable the solvers (CPLEX Toolbox in MATLAB) to be very efficient in advancing early stage ship design applications. The Framework could be developed further for investigating the analysis of energy balances for new systems to achieve net zero energy demands for future naval vessels
Longer fixation duration while viewing face images
The spatio-temporal properties of saccadic eye movements can be influenced by the cognitive demand and the characteristics of the observed scene. Probably due to its crucial role in social communication, it is argued that face perception may involve different cognitive processes compared with non-face object or scene perception. In this study, we investigated whether and how face and natural scene images can influence the patterns of visuomotor activity. We recorded monkeys’ saccadic eye movements as they freely viewed monkey face and natural scene images. The face and natural scene images attracted similar number of fixations, but viewing of faces was accompanied by longer fixations compared with natural scenes. These longer fixations were dependent on the context of facial features. The duration of fixations directed at facial contours decreased when the face images were scrambled, and increased at the later stage of normal face viewing. The results suggest that face and natural scene images can generate different patterns of visuomotor activity. The extra fixation duration on faces may be correlated with the detailed analysis of facial features
Genome-wide association study identifies loci associated with liability to alcohol and drug dependence that is associated with variability in reward-related ventral striatum activity in African- and European-Americans.
Genetic influences on alcohol and drug dependence partially overlap, however, specific loci underlying this overlap remain unclear. We conducted a genome-wide association study (GWAS) of a phenotype representing alcohol or illicit drug dependence (ANYDEP) among 7291 European-Americans (EA; 2927 cases) and 3132 African-Americans (AA: 1315 cases) participating in the family-based Collaborative Study on the Genetics of Alcoholism. ANYDEP was heritable (h 2 in EA = 0.60, AA = 0.37). The AA GWAS identified three regions with genome-wide significant (GWS; P < 5E-08) single nucleotide polymorphisms (SNPs) on chromosomes 3 (rs34066662, rs58801820) and 13 (rs75168521, rs78886294), and an insertion-deletion on chromosome 5 (chr5:141988181). No polymorphisms reached GWS in the EA. One GWS region (chromosome 1: rs1890881) emerged from a trans-ancestral meta-analysis (EA + AA) of ANYDEP, and was attributable to alcohol dependence in both samples. Four genes (AA: CRKL, DZIP3, SBK3; EA: P2RX6) and four sets of genes were significantly enriched within biological pathways for hemostasis and signal transduction. GWS signals did not replicate in two independent samples but there was weak evidence for association between rs1890881 and alcohol intake in the UK Biobank. Among 118 AA and 481 EA individuals from the Duke Neurogenetics Study, rs75168521 and rs1890881 genotypes were associated with variability in reward-related ventral striatum activation. This study identified novel loci for substance dependence and provides preliminary evidence that these variants are also associated with individual differences in neural reward reactivity. Gene discovery efforts in non-European samples with distinct patterns of substance use may lead to the identification of novel ancestry-specific genetic markers of risk
Clinical course, therapeutic responses and outcomes in relapsing MOG antibody-associated demyelination.
Abstract
OBJECTIVE:
We characterised the clinical course, treatment and outcomes in 59 patients with relapsing myelin oligodendrocyte glycoprotein (MOG) antibody-associated demyelination.
METHODS:
We evaluated clinical phenotypes, annualised relapse rates (ARR) prior and on immunotherapy and Expanded Disability Status Scale (EDSS), in 218 demyelinating episodes from 33 paediatric and 26 adult patients.
RESULTS:
The most common initial presentation in the cohort was optic neuritis (ON) in 54% (bilateral (BON) 32%, unilateral (UON) 22%), followed by acute disseminated encephalomyelitis (ADEM) (20%), which occurred exclusively in children. ON was the dominant phenotype (UON 35%, BON 19%) of all clinical episodes. 109/226 (48%) MRIs had no brain lesions. Patients were steroid responsive, but 70% of episodes treated with oral prednisone relapsed, particularly at doses <10\u2009mg daily or within 2 months of cessation. Immunotherapy, including maintenance prednisone (P=0.0004), intravenous immunoglobulin, rituximab and mycophenolate, all reduced median ARRs on-treatment. Treatment failure rates were lower in patients on maintenance steroids (5%) compared with non-steroidal maintenance immunotherapy (38%) (P=0.016). 58% of patients experienced residual disability (average follow-up 61 months, visual loss in 24%). Patients with ON were less likely to have sustained disability defined by a final EDSS of 652 (OR 0.15, P=0.032), while those who had any myelitis were more likely to have sustained residual deficits (OR 3.56, P=0.077).
CONCLUSION:
Relapsing MOG antibody-associated demyelination is strongly associated with ON across all age groups and ADEM in children. Patients are highly responsive to steroids, but vulnerable to relapse on steroid reduction and cessation
- …
