2,801 research outputs found

    Investigating attitudes towards online safety and security, and evaluating a peer-led Internet safety programme for 14– to 16-year-olds: final report

    Get PDF
    Research Grants 2009 - Harnessing Technology Project. Recognising the significant e-safety issues facing young people, students aged between 14 and 16 were encouraged to engage peer-based activities to raise their own awareness of threats and appropriate responses

    The Impact of Distance to Nearest Education Institution on the Post-Compulsory Education Participation Decision

    Get PDF
    This paper uses data sources with the unique capacity to measure distances between home addresses and education institutions, to investigate, for the first time, the effect that such distance has on an individual's post-compulsory education participation decision. The results show that there is no overall net effect. However, when attention is focussed on young people who are on the margin of participating in post-compulsory education (according to their prior attainment and family background) and when post-compulsory education is distinguished by whether it leads to academic or vocational qualifications, then greater distance to nearest education institution is seen to have a significant impact on the decision to continue in full-time post-compulsory education. This finding has relevance for education participation in rural areas relative to urban areas.post-compulsory education participation, travel distance

    Effect of 2-H and 18-O water isotopes in kinesin-1 gliding assay

    Get PDF
    We show here the effects of heavy-hydrogen water (^2^H~2~O) and heavy-oxygen water (H~2~^18^O) on the gliding speed of microtubules on kinesin-1 coated surfaces. Increased fractions of isotopic waters used in the motility solution decreased the gliding speed of microtubules by a maximum of 21% for heavy-hydrogen and 5% for heavy-oxygen water. We discuss possible interpretations of these results and the importance for future studies of water effects on kinesin and microtubules. We also discuss the implication for biomolecular devices incorporating molecular motors

    Delivering a new undergraduate module in Asset Management

    Get PDF

    Speed effects in gliding motility assays due to surface passivation, water isotope, and osmotic stress.

    Get PDF
    The molecular motor kinesin-1, an ATPase, and the substrate it walks along, microtubules, are vital components of eukaryotic cells. Kinesin converts chemical energy to linear motion as its two motor domains step along microtubules in a process similar to how we walk. Cells create systems of microtubules that direct the motion of kinesin. This directed motion allows kinesin to transport various cargos inside cells.

During the stepping process, the kinesin motor domains bind and unbind from their binding sites on the microtubules. Binding and unbinding rates of biomolecules are highly dependent on hydration and exclusion of water from the binding interface. Osmotic stress will likely strongly affect the binding and unbinding rates for kinesin and thus offers a tool to specifically probe those steps. We will report the effects of different osmolytes on microtubule speed and other observables in the gliding motility assay.

Kinesin’s kinetic core cycle hydrolyzes ATP with the help of a water molecule. Any modification to the water molecules the kinesin is in will change how ATP hydrolyzes and will ultimately affect how kinesin moves along microtubules. We will report preliminary results showing how kinesin is affected when the solvent it is in is changed from light water to heavy water.
 
When used in a surface assay or in devices, the kinesin and microtubule system is also dependent on substrate passivation. Kinesin motor domains do not transport microtubules in the gliding motility assay if kinesin is added to a glass microscope slide that has not been functionalized. Functionalization of the glass slides and slips is typically performed with bovine milk proteins called caseins. Bovine casein is a globular protein that can be broken up into four constituents: αs1, αs2, β, and κ. Each casein constituent affects how kinesin adheres to the glass and ultimately the speed at which microtubules are observed to glide at. Building on the work of Verma et.al., we have found that each constituent individually produces different outcomes in gliding assays. We will present these findings and discuss implications they have for use of gliding assays to study kinesin and use of kinesin-microtubule system in microdevices. 

[1] Chaen, S, N Yamamoto, I Shirakawa, and H Sugi. 2001. Effect of deuterium oxide on actomyosin motility in vitro. _Biochimica et biophysica acta_ 1506, no. 3: 218-23. 
[2] Vivek Verma, William O Hancock, Jeffrey M Catchmark, "The role of casein in supporting the operation of surface bound kinesin," _J. Biol. Eng._ 2008; 2: 14.

Acknowledgements: This work was supported by the DTRA CB Basic Research Program under Grant No. HDTRA1-09-1-008.
&#xa

    Lost in translation? Theory, policy and practice in systems-based environmental approaches to obesity prevention in the Healthy Towns programme in England.

    No full text
    This paper explores how system-wide approaches to obesity prevention were 'theorised' and translated into practice in the 'Healthy Towns' programme implemented in nine areas in England. Semi-structured interviews with 20 informants, purposively selected to represent national and local programme development, management and delivery were undertaken. Results suggest that informants articulated a theoretical understanding of a system-wide approach to obesity prevention, but simplifying this complex task in the context of uncertainty over programme aims and objectives, and absence of a clear direction from the central government, resulted in local programmes relying on traditional multi-component approaches to programme delivery. The development of clear, practical guidance on implementation should form a central part of future system-wide approaches to obesity prevention

    Measurement of the radiation field surrounding the Collider Detector at Fermilab

    Full text link
    We present here the first direct and detailed measurements of the spatial distribution of the ionizing radiation surrounding a hadron collider experiment. Using data from two different exposures we measure the effect of additional shielding on the radiation field around the Collider Detector at Fermilab (CDF). Employing a simple model we parameterize the ionizing radiation field surrounding the detector.Comment: PDF document, 5 pages, including 10 encapsulated postscript figures: Proceedings for the IEEE/NSS-MIC 2003 Conference, Portland, Oregon, October 19-25, 200

    Do the maths: An analysis of the gender gap in mathematics in Africa

    Full text link
    This paper uses microdata for 19 African countries to examine the gender difference in maths test scores amongst primary school children. There is a significant difference in maths test scores in favour of boys, similar to that previously observed in developed countries. This difference cannot be explained by gender differences in school quality, home environment, or within-school gender discrimination in access to schooling inputs. However, the gender gap varies widely with characteristics of the regions in which the pupils live, and these regional characteristics are more predictive of the gender gap than parental education and school characteristics, including teacher gender. At the cross-country level, differences in fertility rates account for nearly half the variation in the gender gap, and this relationship is not due to the correlation between fertility and GDP nor to gender inequality as measured by the Gender Gap Index

    Effect of 2H and 18O water isotopes in kinesin-1 gliding assay

    Get PDF
    We show for the first time the effects of heavy-hydrogen water (2H2O) and heavy-oxygen water (H218O) on the gliding speed of microtubules on kinesin-1 coated surfaces. Increased fractions of isotopic waters used in the motility solution decreased the gliding speed of microtubules by a maximum of 21% for heavy-hydrogen and 5% for heavy-oxygen water. We also show that gliding microtubule speed returns to its original speed after being treated with heavy-hydrogen water. We discuss possible interpretations of these results and the importance for future studies of water effects on kinesin and microtubules. We also discuss the implication for using heavy waters in biomolecular devices incorporating molecular motors
    corecore