3,475 research outputs found

    Oxidative protein folding in the mitochondrial intermembrane space

    Get PDF
    Disulfide bond formation is a crucial step for oxidative folding and necessary for the acquisition of a protein's native conformation. Introduction of disulfide bonds is catalyzed in specialized subcellular compartments and requires the coordinated action of specific enzymes. The intermembrane space of mitochondria has recently been found to harbor a dedicated machinery that promotes the oxidative folding of substrate proteins by shuttling disulfide bonds. The newly identified oxidative pathway consists of the redox-regulated receptor Mia40 and the sulfhydryl oxidase Erv1. Proteins destined to the intermembrane space are trapped by a disulfide relay mechanism that involves an electron cascade from the incoming substrate to Mia40, then on to Erv1, and finally to molecular oxygen via cytochrome c. This thiol–disulfide exchange mechanism is essential for the import and for maintaining the structural stability of the incoming precursors. In this review we describe the mechanistic parameters that define the interaction and oxidation of the substrate proteins in light of the recent publications in the mitochondrial oxidative folding field

    Urinary and faecal N-methylhistamine concentrations do not serve as markers for mast cell activation or clinical disease activity in dogs with chronic enteropathies

    Get PDF
    This study sought to correlate faecal and urinary N-methylhistamine (NMH) concentrations with resting versus degranulated duodenal mast cell numbers in dogs with chronic enteropathies (CE), and investigate correlations between intestinal mast cell activation and clinical severity of disease as assessed by canine chronic enteropathy clinical activity index (CCECAI), and between urinary and faecal NMH concentrations, mast cell numbers, and histopathological scores. Twenty-eight dogs with CE were included. Duodenal biopsies were stained with haematoxylin and eosin (H&E), toluidine blue, and by immunohistochemical labelling for tryptase. Duodenal biopsies were assigned a histopathological severity score, and duodenal mast cell numbers were counted in five high-power fields after metachromatic and immunohistochemical staining. Faecal and urinary NMH concentrations were measured by gas chromatography–mass spectrometry

    Characteristic Temperatures of Folding of a Small Peptide

    Get PDF
    We perform a generalized-ensemble simulation of a small peptide taking the interactions among all atoms into account. From this simulation we obtain thermodynamic quantities over a wide range of temperatures. In particular, we show that the folding of a small peptide is a multi-stage process associated with two characteristic temperatures, the collapse temperature T_{\theta} and the folding temperature T_f. Our results give supporting evidence for the energy landscape picture and funnel concept. These ideas were previously developed in the context of studies of simplified protein models, and here for the first time checked in an all-atom Monte Carlo simulation.Comment: Latex, 6 Figure

    A Multicanonical Molecular Dynamics Study on a Simple Bead-Spring Model for Protein Folding

    Full text link
    We have performed a multicanonical molecular dynamics simulation on a simple model protein.We have studied a model protein composed of charged, hydrophobic, and neutral spherical bead monomers.Since the hydrophobic interaction is considered to significantly affect protein folding, we particularly focus on the competition between effects of the Coulomb interaction and the hydrophobic interaction. We found that the transition which occurs upon decreasing the temperature is markedly affected by the change in both parameters and forms of the hydrophobic potential function, and the transition changes from first order to second order, when the Coulomb interaction becomes weaker.Comment: 7 pages, 6 postscript figures, To appear in J.Phys.Soc.Jpn. Vol.70 No.

    Thermodynamic Prediction of Protein Neutrality

    Get PDF
    We present a simple theory that uses thermodynamic parameters to predict the probability that a protein retains the wildtype structure after one or more random amino acid substitutions. Our theory predicts that for large numbers of substitutions the probability that a protein retains its structure will decline exponentially with the number of substitutions, with the severity of this decline determined by properties of the structure. Our theory also predicts that a protein can gain extra robustness to the first few substitutions by increasing its thermodynamic stability. We validate our theory with simulations on lattice protein models and by showing that it quantitatively predicts previously published experimental measurements on subtilisin and our own measurements on variants of TEM1 beta-lactamase. Our work unifies observations about the clustering of functional proteins in sequence space, and provides a basis for interpreting the response of proteins to substitutions in protein engineering applications

    On the optimal contact potential of proteins

    Full text link
    We analytically derive the lower bound of the total conformational energy of a protein structure by assuming that the total conformational energy is well approximated by the sum of sequence-dependent pairwise contact energies. The condition for the native structure achieving the lower bound leads to the contact energy matrix that is a scalar multiple of the native contact matrix, i.e., the so-called Go potential. We also derive spectral relations between contact matrix and energy matrix, and approximations related to one-dimensional protein structures. Implications for protein structure prediction are discussed.Comment: 5 pages, text onl

    Highly Designable Protein Structures and Inter Monomer Interactions

    Full text link
    By exact computer enumeration and combinatorial methods, we have calculated the designability of proteins in a simple lattice H-P model for the protein folding problem. We show that if the strength of the non-additive part of the interaction potential becomes larger than a critical value, the degree of designability of structures will depend on the parameters of potential. We also show that the existence of a unique ground state is highly sensitive to mutation in certain sites.Comment: 14 pages, Latex file, 3 latex and 6 eps figures are include

    Reply to Comment on "Criterion that Determines the Foldability of Proteins"

    Full text link
    We point out that the correlation between folding times and σ=(TθTf)/Tθ\sigma = (T_{\theta } - T_{f})/T_{\theta } in protein-like heteropolymer models where TθT_{\theta } and TfT_{f} are the collapse and folding transition temperatures was already established in 1993 before the other presumed equivalent criterion (folding times correlating with TfT_{f} alone) was suggested. We argue that the folding times for these models show no useful correlation with the energy gap even if restricted to the ensemble of compact structures as suggested by Karplus and Shakhnovich (cond-mat/9606037).Comment: 6 pages, Latex, 2 Postscript figures. Plots explicitly showing the lack of correlation between folding time and energy gap are adde

    Deriving amino acid contact potentials from their frequencies of occurence in proteins: a lattice model study

    Full text link
    The possibility of deriving the contact potentials between amino acids from their frequencies of occurence in proteins is discussed in evolutionary terms. This approach allows the use of traditional thermodynamics to describe such frequencies and, consequently, to develop a strategy to include in the calculations correlations due to the spatial proximity of the amino acids and to their overall tendency of being conserved in proteins. Making use of a lattice model to describe protein chains and defining a "true" potential, we test these strategies by selecting a database of folding model sequences, deriving the contact potentials from such sequences and comparing them with the "true" potential. Taking into account correlations allows for a markedly better prediction of the interaction potentials

    A protein model exhibiting three folding transitions

    Full text link
    We explain the physical basis of a model for small globular proteins with water interactions. The water is supposed to access the protein interior in an "all-or-none" manner during the unfolding of the protein chain. As a consequence of this mechanism (somewhat speculative), the model exhibits fundamental aspects of protein thermodynamics, as cold, and warm unfolding of the polypeptide chain, and hence decreasing the temperature below the cold unfolding the protein folds again, accordingly the heat capacity has three characteristic peaks. The cold and warm unfolding has a sharpness close to a two-state system, while the cold folding is a transition where the intermediate states in the folding is energetical close to the folded/unfolded states, yielding a less sharp transition. The entropy of the protein chain causes both the cold folding and the warm unfolding.Comment: 13 pages LaTeX, 4 Postscript figure
    corecore