383 research outputs found
The ergogenic effects of transcranial direct current stimulation on exercise performance
The physical limits of the human performance have been the object of study for a considerable time. Most of the research has focused on the locomotor muscles, lungs and heart. As a consequence, much of the contemporary literature has ignored the importance of the brain in the regulation of exercise performance. With the introduction and development of new non-invasive devices, the knowledge regarding the behaviour of the central nervous system during exercise has advanced. A first step has been provided from studies involving neuroimaging techniques where the role of specific brain areas have been identified during isolated muscle or whole-body exercise. Furthermore, a new interesting approach has been provided by studies involving non-invasive techniques to manipulate specific brain areas. These techniques most commonly involve the use of an electrical or magnetic field crossing the brain. In this regard, there has been emerging literature demonstrating the possibility to influence exercise outcomes in healthy people following stimulation of specific brain areas. Specifically, transcranial direct current stimulation (tDCS) has been recently used prior to exercise in order to improve exercise performance under a wide range of exercise types. In this review article, we discuss the evidence provided from experimental studies involving tDCS. The aim of this review is to provide a critical analysis of the experimental studies investigating the application of tDCS prior to exercise and how it influences brain function and performance. Finally, we provide a critical opinion of the usage of tDCS for exercise enhancement. This will consequently progress the current knowledge base regarding the effect of tDCS on exercise and provides both a methodological and theoretical foundation on which future research can be based
The logic of identity and copy for computational artefacts
Defining identity for entities is a longstanding logical problem in philosophy, and it has resurfaced in current investigations within the philosophy of technology. The problem has not yet been explored for the philosophy of information, and of Computer Science in particular. This paper provides a logical analysis of identity and copy for computational artefacts. Identity is here understood as the relation holding between an instance of a computational artefact and itself. By contrast, the copy relation holds between two distinct computational artefacts. We distinguish among exact, inexact and approximate copies. We use process algebra to provide suitable formal definitions of these relations, using in particular the notion of bisimulation to define identity and exact copies, and simulation for inexact and approximate copies. Equivalence is unproblematic for identical computational artefacts at each individual time and for inexact copies; we will examine to which extent the formal constraints on identity criteria discussed in the literature are satisfied by our approach. As for inexact and approximate copy, they are intended as a weakening of the identity relation in that equivalence and other constraints on identity are violated. The proposed approach also suggests a computable treatment of identity and copy checking
BAT2 and BAT3 polymorphisms as novel genetic risk factors for rejection after HLA-related SCT.
The genetic background of donor and recipient is an important factor determining the outcome of allogeneic hematopoietic SCT (allo-HSCT). We applied whole-genome analysis to investigate genetic variants - other than HLA class I and II - associated with negative outcome after HLA-identical sibling allo-HSCT in a cohort of 110 β-Thalassemic patients. We identified two single-nucleotide polymorphisms (SNPs) in BAT2 (A/G) and BAT3 (T/C) genes, SNP rs11538264 and SNP rs10484558, both located in the HLA class III region, in strong linkage disequilibrium between each other (R2 =0.92). When considered as single SNP, none of them reached a significant association with graft rejection (nominal P<0.00001 for BAT2 SNP rs11538264, and P<0.0001 for BAT3 SNP rs10484558), whereas the BAT2/BAT3 A/C haplotype was present at significantly higher frequency in patients who rejected as compared to those with functional graft (30.0% vs 2.6%, nominal P=1.15 × 10-8; and adjusted P=0.0071). The BAT2/BAT3 polymorphisms and specifically the A/C haplotype may represent a novel immunogenetic factor associated with graft rejection in patients undergoing allo-HSCT
Infringing software property rights : ontological, methodological, and ethical questions
This paper contributes to the computer ethics debate on software ownership protection by examining the ontological, methodological, and ethical problems related to property right infringement that should come prior to any legal discussion. The ontological problem consists in determining precisely what it is for a computer program to be a copy of another one, a largely neglected problem in computer ethics. The methodological problem is defined as the difficulty of deciding whether a given software system is a copy of another system. And the ethical problem corresponds to establishing when a copy constitutes, or does not constitute, a property right infringement. The ontological problem is solved on the logical analysis of abstract machines, and the latter are argued to be the appropriate level of abstraction for software at which the methodological and the ethical problems can be successfully addressed
Copying safety and liveness properties of computational artefacts
This paper shows how safety and liveness properties are not necessarily preserved by different kinds of copies of computational artefacts and proposes procedures to preserve them, which are consistent with ethical analyses on software property rights infringement. Safety and liveness are second-order properties that are crucial in the definition of the formal ontology of computational artefacts. Software copies are analysed at the level of their formal models as exact, inexact and approximate copies, according to the taxonomy in []. First, it is explained how exact copies are the only kind of copies that preserve safety and liveness properties, and how inexact and approximate copies do not necessarily preserve them. Secondly, two model checking algorithms are proposed to verify whether inexact and approximate copies actually preserve safety and liveness properties. Essential properties of termination, correctness and complexity are proved for these algorithms. Finally, contraction and expansion algorithmic operations are defined, allowing for the automatic design of safety- and liveness-preserving approximate copies. As a conclusion, the relevance of the present logical analysis for the ongoing debates in miscomputation and computer ethics is highlighted
Recommended from our members
The effect of vascular changes on the photoplethysmographic signal at different hand elevations
In order to further understand the contribution of venous and arterial effects to the photoplethysmographic (PPG) signal, recordings were made from twenty healthy volunteer subjects during an exercise in which the right hand was raised and lowered with reference to heart level. Red (R) and infrared (IR) PPG signals were obtained from the right index finger using a custom-made PPG processing system. Laser Doppler flowmetry (LDF) signals were also recorded from an adjacent fingertip. The signals were compared with simultaneous PPG signals obtained from the left index finger. On lowering the hand to 50 cm below heart level, both ac and dc PPG amplitudes from the finger decreased (e.g. 18.70% and 63.15% decrease in infrared dc and ac signals respectively). The decrease in dc amplitude most likely corresponded to increased venous volume, while the decrease in ac PPG amplitude was due to regulatory adjustments on the arterial side in response to venous distension. Conversely, ac and dc PPG amplitudes increased on raising the arm above heart level. Morphological changes in the ac PPG signal are thought to be due to vascular resistance changes, predominately venous, as the hand position is changed
Do Daily Activities Impact Gas Tamponade - Retina Contact after Pars Plana Vitrectomy? A Computational Fluid Dynamics Study
Purpose:To calculate the retinal surface alternatively in contact with gas and aqueous because of fluid sloshing during daily activities such as ocular saccade, turning the head, standing up, and being a passenger of a braking car.Methods:Fluid dynamics of aqueous and gas tamponade was reproduced using computational methods using the OpenFOAM open-source library. The double-fluid dynamics was simulated by the volume of fluid method and setting the contact angle at the aqueous-gas-retina interface.Results:Sloshing increased the retinal surface in contact with aqueous by 13% to 16% regardless of fill rate and standing up determined the largest area of wet retina, followed by car braking, head rotation, and ocular saccade (P < 0.001). All activities except the ocular saccade determined a significant increase in the surface of retina in contact with the aqueous (P < 0.005). Car braking induced the highest shear stress (6.06 Pa); standing up determined the highest specific impulse and saccade the lowest.Conclusion:Daily activities instantaneously reduce the amount of retina consistently in contact with gas tamponade and increase shear stress giving aqueous a potential access to the subretinal space regardless of patients' compliance
Poloxamer-based thermoresponsive ketorolac tromethamine in situ gel preparations : design, characterisation, toxicity and transcorneal permeation studies
This study was aimed at preparing, characterising and evaluating in situ gel formulations based on a blend of two hydrophilic polymers i.e. poloxamer 407 (P407) and poloxamer 188 (P188) for a sustained ocular delivery of ketorolac tromethamine (KT). Drug-polymer interaction studies were performed using {DSC} and FT-IR. The gelation temperature (Tsol-gel), gelation time, rheological behaviour, mucoadhesive characteristics of these gels, transcorneal permeation and ocular irritation as well as toxicity was investigated. {DSC} and FT-IR studies revealed that there may be electrostatic interactions between the drug and the polymers used. {P188} modified the Tsol/gel of {P407} bringing it close to eye temperature (35°C) compared with the formulation containing {P407} alone. Moreover, gels that comprised {P407} and {P188} exhibited a pseudoplastic behaviour at different concentrations. Furthermore, mucoadhesion study using mucin discs showed that in situ gel formulations have good mucoadhesive characteristics upon increasing the concentration of P407. When comparing formulations {PP11} and PP12, the work of adhesion decreased significantly (P < 0.001) from 377.9 ± 7.79 mN.mm to 272.3 ± 6.11 mN.mm. In vitro release and ex vivo permeation experiments indicated that the in situ gels were able to prolong and control {KT} release as only 48 of the {KT} released within 12 h. In addition, the HET-CAM and {BCOP} tests confirmed the non-irritancy of {KT} loaded in situ gels, and HET-CAM test demonstrated the ability of ocular protection against strongly irritant substances. {MTT} assay on primary corneal epithelial cells revealed that in situ gel formulations loaded with {KT} showed reasonable and acceptable percent cell viability compared with control samples
Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel
A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved
Effects of caffeine on neuromuscular fatigue and performance during high-intensity cycling exercise in moderate hypoxia
Purpose: To investigate the effects of caffeine on performance, neuromuscular fatigue and perception of effort during high-intensity cycling exercise in moderate hypoxia. Methods: Seven adult male participants firstly underwent an incremental exercise test on a cycle ergometer in conditions of acute normobaric hypoxia (fraction inspired oxygen = 0.15) to establish peak power output (PPO). In the following two visits, they performed a time to exhaustion test (78 ± 3% PPO) in the same hypoxic conditions after caffeine ingestion (4 mg kg) and one after placebo ingestion in a double-blind, randomized, counterbalanced cross-over design. Results: Caffeine significantly improved time to exhaustion by 12%. A significant decrease in subjective fatigue was found after caffeine consumption. Perception of effort and surface electromyographic signal amplitude of the vastus lateralis were lower and heart rate was higher in the caffeine condition when compared to placebo. However, caffeine did not reduce the peripheral and central fatigue induced by high-intensity cycling exercise in moderate hypoxia. Conclusion: The caffeine-induced improvement in time to exhaustion during high-intensity cycling exercise in moderate hypoxia seems to be mediated by a reduction in perception of effort, which occurs despite no reduction in neuromuscular fatigue
- …
