2,964 research outputs found

    Characterization of non-intentional emissions from distributed energy resources up to 500 kHz: A case study in Spain

    Get PDF
    Narrow Band Power Line Communications (NB-PLC) systems are currently used for smart metering and power quality monitoring as a part of the Smart Grid (SG) concept. However, non-intentional emissions generated by the devices connected to the grid may sometimes disturb the communications and isolate metering equipment. Though some research works have been recently developed to characterize these emissions, most of them have been limited to frequencies below 150 kHz and they are mainly focused on in-house electronic appliances and lightning devices. As NB-PLC can also be allocated in higher frequencies up to 500 kHz, there is still a lack of analysis in this frequency range, especially for emissions from Distributed Energy Resources (DERs). The identification and characterization of the emissions is essential to develop solutions that avoid a negative impact on the proper performance of NB-PLC. In this work, the non-intentional emissions of different types of DERs composing a representative microgrid have been measured in the 35–500 kHz frequency range and analyzed both in time and frequency domains. Different working conditions and coupling and commutation procedures to mains are considered in the analysis. Results are then compared to the limits recommended by regulatory bodies for spurious emissions from communication systems in this frequency band, as no specific limits for DERs have been established. Field measurements show clear differences in the characteristics of non-intentional emissions for different devices, working conditions and coupling procedures and for frequencies below and above 150 kHz. Results of this study demonstrate that a further characterization of the potential emissions from the different types of DERs connected to the grid is required in order to guarantee current and future applications based on NB-PLC.This work has been financially supported in part by the Basque Government (Elkartek program)

    The effect of material cyclic deformation properties on residual stress generation by laser shock processing

    Get PDF
    Laser shock processing (LSP) is a mechanical surface treatment to induce a compressive residual stress state into the near surface region of a metallic component. The effect of the cyclic deformation properties of ductile materials on the final residual stress fields obtained by LSP is analysed. Conventional modelling approaches either use simple tensile yield criteria, or isotropic hardening models if cyclic straining response is considered for the material during the peen processing. In LSP, the material is likely to be subject to cyclic loading because of reverse yielding after the initial plastic deformation. The combination of experiment and modelling shows that the incorporation of experimentally-determined cyclic stress-strain data, including mechanical hysteresis, into material deformation models is required to correctly reflect the cyclic deformation processes during LSP treatment and obtain accurate predictions of the induced residual stresses.</p

    Pulsating young brown dwarfs

    Full text link
    We present the results of a nonadiabatic, linear stability analysis of models of very low-mass stars (VLMSs) and brown dwarfs (BDs) during the deuterium burning phase in the center. We find unstable fundamental modes with periods varying between ~5 hr for a 0.1 Msun star and ~1 hr for a 0.02 Msun BD. The growth time of the instability decreases with decreasing mass and remains well below the deuterium burning time scale in the mass range considered (0.1--0.02 Msun). These results are robust against variations of the relevant input physics in the evolutionary models. We identify possible candidates for pulsational variability among known VLMSs and BDs in nearby star forming regions whose location in the HR diagram falls within or close to the boundary of the instability strip. Finally, we discuss the possibility that the variability observed in a few objects with periods of ~1 hr can be interpreted in terms of pulsation.Comment: 5 pages, 3 figures, A&A Letters (in press

    On Hirschman and log-Sobolev inequalities in mu-deformed Segal-Bargmann analysis

    Full text link
    We consider a deformation of Segal-Bargmann space and its transform. We study L^p properties of this transform and obtain entropy-entropy inequalities (Hirschman) and entropy-energy inequalities (log-Sobolev) that generalize the corresponding known results in the undeformed theory.Comment: 42 pages, 3 figure

    Configuration Complexities of Hydrogenic Atoms

    Full text link
    The Fisher-Shannon and Cramer-Rao information measures, and the LMC-like or shape complexity (i.e., the disequilibrium times the Shannon entropic power) of hydrogenic stationary states are investigated in both position and momentum spaces. First, it is shown that not only the Fisher information and the variance (then, the Cramer-Rao measure) but also the disequilibrium associated to the quantum-mechanical probability density can be explicitly expressed in terms of the three quantum numbers (n, l, m) of the corresponding state. Second, the three composite measures mentioned above are analytically, numerically and physically discussed for both ground and excited states. It is observed, in particular, that these configuration complexities do not depend on the nuclear charge Z. Moreover, the Fisher-Shannon measure is shown to quadratically depend on the principal quantum number n. Finally, sharp upper bounds to the Fisher-Shannon measure and the shape complexity of a general hydrogenic orbital are given in terms of the quantum numbers.Comment: 22 pages, 7 figures, accepted i

    Conductance Distributions in Random Resistor Networks: Self Averaging and Disorder Lengths

    Full text link
    The self averaging properties of conductance gg are explored in random resistor networks with a broad distribution of bond strengths P(g)\simg^{\mu-1}. Distributions of equivalent conductances are estimated numerically on hierarchical lattices as a function of size LL and distribution tail parameter μ\mu. For networks above the percolation threshold, convergence to a Gaussian basin is always the case, except in the limit μ\mu --> 0. A {\it disorder length} ξD\xi_D is identified beyond which the system is effectively homogeneous. This length diverges as ξDμν\xi_D \sim |\mu|^{-\nu} (ν\nu is the regular percolation correlation length exponent) as μ\mu-->0. This suggest that exactly the same critical behavior can be induced by geometrical disorder and bu strong bond disorder with the bond occupation probability ppμ\mu. Only lattices at the percolation threshold have renormalized probability distribution in a {\it Levy-like} basin. At the threshold the disorder length diverges at a vritical tail strength μc\mu_c as μμcz|\mu-\mu_c|^{-z}, with z=3.2±0.1z=3.2\pm 0.1, a new exponent. Critical path analysis is used in a generalized form to give form to give the macroscopic conductance for lattice above pcp_c.Comment: 16 pages plain TeX file, 6 figures available upon request.IBC-1603-01

    A first--order irreversible thermodynamic approach to a simple energy converter

    Full text link
    Several authors have shown that dissipative thermal cycle models based on Finite-Time Thermodynamics exhibit loop-shaped curves of power output versus efficiency, such as it occurs with actual dissipative thermal engines. Within the context of First-Order Irreversible Thermodynamics (FOIT), in this work we show that for an energy converter consisting of two coupled fluxes it is also possible to find loop-shaped curves of both power output and the so-called ecological function against efficiency. In a previous work Stucki [J.W. Stucki, Eur. J. Biochem. vol. 109, 269 (1980)] used a FOIT-approach to describe the modes of thermodynamic performance of oxidative phosphorylation involved in ATP-synthesis within mithochondrias. In that work the author did not use the mentioned loop-shaped curves and he proposed that oxidative phosphorylation operates in a steady state simultaneously at minimum entropy production and maximum efficiency, by means of a conductance matching condition between extreme states of zero and infinite conductances respectively. In the present work we show that all Stucki's results about the oxidative phosphorylation energetics can be obtained without the so-called conductance matching condition. On the other hand, we also show that the minimum entropy production state implies both null power output and efficiency and therefore this state is not fulfilled by the oxidative phosphorylation performance. Our results suggest that actual efficiency values of oxidative phosphorylation performance are better described by a mode of operation consisting in the simultaneous maximization of the so-called ecological function and the efficiency.Comment: 20 pages, 7 figures, submitted to Phys. Rev.

    Inhibition of the p110α isoform of PI 3-kinase stimulates nonfunctional tumor angiogenesis

    Get PDF
    Understanding the direct, tumor cell–intrinsic effects of PI 3-kinase (PI3K) has been a key focus of research to date. Here, we report that cancer cell–extrinsic PI3K activity, mediated by the p110α isoform of PI3K, contributes in an unexpected way to tumor angiogenesis. In syngeneic mouse models, inactivation of stromal p110α led to increased vascular density, reduced vessel size, and altered pericyte coverage. This increased vascularity lacked functionality, correlating with enhanced tumor hypoxia and necrosis, and reduced tumor growth. The role of p110α in tumor angiogenesis is multifactorial, and includes regulation of proliferation and DLL4 expression in endothelial cells. p110α in the tumor stroma is thus a regulator of vessel formation, with p110α inactivation giving rise to nonfunctional angiogenesis, which can stunt tumor growth. This type of vascular aberration differs from vascular endothelial growth factor–centered antiangiogenesis therapies, which mainly lead to vascular pruning. Inhibition of p110α may thus offer a new antiangiogenic therapeutic opportunity in cancer
    corecore