100 research outputs found
Type A4 truncus arteriosus: series of 3 cases focused on dual source multidetector CT angiogram findings
Truncus arteriosus (TA) is a rare congenital cardiac anomaly caused by failure of normal conotruncal septation during the fetal development. This aberration leads to a common ventricular outflow artery over the malaligned large ventricular septal defect (VSD), supplying systemic, coronary and pulmonary circulation. People with such anomalous anatomy show variable presentation from early childhood to adult life depending on the severity of defects. We here present three cases of truncus arteriosus with aortic interruption / hypoplasia-coarctation (type A4 truncus arteriosus) with focus on relevant dual source MDCTA findings
Rust (Uromyces viciae-fabae Pers. de-Bary) of Pea (Pisum sativum L.): Present Status and Future Resistance Breeding Opportunities
Uromyces viciae-fabae Pers. de-Bary is an important fungal pathogen causing rust in peas (Pisum sativum L.). It is reported in mild to severe forms from different parts of the world where the pea is grown. Host specificity has been indicated in this pathogen in the field but has not yet been established under controlled conditions. The uredinial states of U. viciae-fabae are infective under temperate and tropical conditions. Aeciospores are infective in the Indian subcontinent. The genetics of rust resistance was reported qualitatively. However, non-hypersensitive resistance responses and more recent studies emphasized the quantitative nature of pea rust resistance. Partial resistance/slow rusting had been described as a durable resistance in peas. Such resistance is of the pre-haustorial type and expressed as longer incubation and latent period, poor infection efficiency, a smaller number of aecial cups/pustules, and lower units of AUDPC (Area Under Disease Progress Curve). Screening techniques dealing with slow rusting should consider growth stages and environment, as both have a significant influence on the disease scores. Our knowledge about the genetics of rust resistance is increasing, and now molecular markers linked with gene/QTLs (Quantitative Trait Loci) of rust resistance have been identified in peas. The mapping efforts conducted in peas came out with some potent markers associated with rust resistance, but they must be validated under multi-location trails before use in the marker-assisted selection of rust resistance in pea breeding programs
Strategies for identifying stable lentil cultivars (Lens culinaris Medik) for combating hidden hunger, malnourishment, and climate variability
Iron and zinc malnutrition is a global humanitarian concern that mostly affects newborns, children, and women in low- and middle-income countries where plant-based diets are regularly consumed. This kind of malnutrition has the potential to result in a number of immediate and long-term implications, including stunted growth, an elevated risk of infectious diseases, and poor development, all of which may ultimately cause children to not develop to the fullest extent possible. A determination of the contributions from genotype, environment, and genotype by environment interactions is necessary for the production of nutrient-dense lentil varieties that offer greater availability of iron and zinc with a high level of trait stability. Understanding the genotype and environmental parameters that affect G x E (Genotype x Environment) interactions is essential for plant breeding. We used GGE(Genotype, Genotype x Environment interactions) and AMMI (Additive Main effects and Multiplicative Interaction) models to study genetic stability and GE(Genotype x Environment interactions) for grain Fe, Zn, Al, and anti-nutritional factors like phytic acid content in sixteen commercially produced lentil cultivars over several different six geographical locations across India. Significant genetic variability was evident in the Fe and Zn levels of different genotypes of lentils. The amounts of grain iron, zinc, and phytic acid varied from 114.10 to 49.90 mg/kg, 74.62 to 21.90 mg/kg, and 0.76 to 2.84 g/100g (dw) respectively. The environment and GE (Genotype x Environment interactions) had an impact on the concentration of grain Fe, Zn, and phytic acid (PA). Heritability estimations ranged from low to high (53.18% to 99.48%). The study indicated strong correlation between the contents of Fe and Zn, a strategy for simultaneously increasing Fe and Zn in lentils may be recommended. In addition, our research revealed that the stable and ideal lentil varieties L4076 (Pusa Shivalik) for Fe concentration and L4717 (Pusa Ageti) for Zn content, which have lower phytic acid contents, will not only play an essential role as stable donors in the lentil bio-fortification but will also enable the expansion of the growing area of bio-fortified crops for the security of health and nutrition
Anti-thrombotic efficacy of S007-867: Pre-clinical evaluation in experimental models of thrombosis in vivo and in vitro.
Pharmacological inhibition of platelet collagen interaction is a promising therapeutic strategy to treat intra-vascular thrombosis. S007-867 is a novel synthetic inhibitor of collagen-induced platelet aggregation. It has shown better antithrombotic protection than aspirin and clopidogrel with minimal bleeding tendency in mice. The present study is aimed to systematically investigate the antithrombotic efficacy of S007-867 in comparison to aspirin and clopidogrel in vivo and to delineate its mechanism of action in vitro. Aspirin, clopidogrel, and S007-867 significantly reduced thrombus weight in arterio-venous (AV) shunt model in rats. In mice, following ferric chloride induced thrombosis in either carotid or mesenteric artery; S007-867 significantly prolonged the vessel occlusion time (1.2-fold) and maintained a sustained blood flow velocity for >30 min. Comparatively, clopidogrel showed significant prolongation in TTO (1.3-fold) while aspirin remained ineffective. Both S007-867 and aspirin did not alter bleeding time in either kidney or spleen injury models, and thus maintained hemostasis, while clopidogrel showed significant increase in spleen bleeding time (1.7-fold). The coagulation parameters namely thrombin time, prothrombin time or activated partial thromboplastin time remained unaffected even at high concentration of S007-867 (300 µM), thus implying its antithrombotic effect to be primarily platelet mediated. S007-867 significantly inhibited collagen-mediated platelet adhesion and aggregation in mice ex-vivo. Moreover, when blood was perfused over a highly thrombogenic combination of collagen mimicking peptides like CRP-GFOGER-VWF-III, S007-867 significantly reduced total thrombus volume or ZV50 (53.4 ± 5.7%). Mechanistically, S007-867 (10-300 μM) inhibited collagen-induced ATP release, thromboxane A2 (TxA2) generation, intra-platelet [Ca+2] flux and global tyrosine phosphorylation including PLCγ2. Collectively the present study highlights that S007-867 is a novel synthetic inhibitor of collagen induced platelet activation, that effectively maintains blood flow velocity and delays vascular occlusion. It inhibits thrombogenesis without compromising hemostasis. Therefore, S007-867 may be further developed for the treatment of thrombotic disorders in clinical settings
Identification of mungbean lines with tolerance or resistance to yellow mosaic in fields in India where different begomovirus species and different Bemisia tabaci cryptic species predominate
Mungbean (Vigna radiata (L.) Wilczek) is an important pulse crop in India. A major constraint for improved productivity is the yield loss caused by mungbean yellow mosaic disease (MYMD). This disease is caused by several begomoviruses which are transmitted by the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). The objective of this study was to identify the predominant begomoviruses infecting mungbean and the major cryptic species of B. tabaci associated with this crop in India. The indigenous B. tabaci cryptic species Asia II 1 was found dominant in Northern India, whereas Asia II 8 was found predominant in Southern India. Repeated samplings over consecutive years indicate a stable situation with, Mungbean yellow mosaic virus strains genetically most similar to a strain from urdbean (MYMV-Urdbean) predominant in North India, strains most similar to MYMV-Vigna predominant in South India, and Mungbean yellow mosaic India virus (MYMIV) strains predominant in Eastern India. In field studies, mungbean line NM 94 showed a high level of tolerance to the disease in the Eastern state of Odisha where MYMIV was predominant and in the Southern state of Andhra Pradesh where MYMV-Vigna was predominant, but only a moderate level of tolerance in the Southern state of Tamil Nadu. However, in Northern parts of India where there was high inoculum pressure of MYMV-Urdbean during the Kharif season, NM 94 developed severe yellow mosaic symptoms. The identification of high level of tolerance in mungbean lines such as ML 1628 and of resistance in black gram and rice bean provides hope for tackling the disease through resistance breeding
Identification of mungbean lines with tolerance or resistance to yellow mosaic in fields in India where different begomovirus species and different Bemisia tabaci cryptic species predominate
Strengthening Emergency Response: Exploring On-site Water Treatment Technologies for Floods
In times of crisis, access to safe and clean water is critical for disaster response teams and affected communities. Water is essential for survival, particularly in the aftermath of disasters like floods. Ensuring sufficient quantities of potable water is a critical challenge in emergencies. This article explores on-site water treatment technologies, emphasising their role in enhancing emergency response. Point-of-use household-level techniques such as straining, sedimentation, filtration, boiling, and chlorine disinfection may be effective and sufficient for a family. However, portable or on-site water purification systems offer a more versatile alternative to cater to larger communities, as they can be customised with various treatment processes to address specific contaminants, making them suitable for camp or community-level responses. Additionally, emerging trends like advanced filtration and scalable on-site treatment units offer improved efficiency during crises. A laboratory prototype of an on-site water treatment system was demonstrated, showing the ability to meet emergency water quality standards. The prototype produced water with pH levels between 6.5 and 8.5, turbidity below 5 NTU, and residual chlorine up to 0.5 mg/L, meeting Sphere standards for emergency water supply
Effect of Various Environmental Parameters on Biosorptive Removal of Atrazine from WaterEnvironment
- …
