54 research outputs found
On the presence and functional significance of sympathetic premotor neurons with collateralized spinal axons in the rat
KEY POINTS: Spinally-projecting neurons of the rostral ventrolateral medulla (RVLM) determine sympathetic outflow to different territories of the body. Previous studies suggest the existence of RVLM neurons with distinct functional classes, such as neurons that target sympathetic nerves bound for functionally-similar tissue types (e.g. muscle vasculature). The existence of RVLM neurons with more general actions had not been critically tested. Using viral tracing, we show that a significant minority of RVLM neurons send axon collaterals to disparate spinal segments (T2 and T10 ). Furthermore, optogenetic activation of sympathetic premotor neurons projecting to lumbar spinal segments also produced activation of sympathetic nerves from rostral spinal segments that innervate functionally diverse tissues (heart and forelimb muscle). These findings suggest the existence of individual RVLM neurons for which the axons branch to drive sympathetic preganglionic neurons of more than one functional class and may be able to produce global changes in sympathetic activity. ABSTRACT: We investigate the extent of spinal axon collateralization of rat rostral ventrolateral medulla (RVLM) sympathetic premotor neurons and its functional consequences. In anatomical tracing experiments, two recombinant herpes viral vectors with retrograde tropism and expressing different fluorophores were injected into the intermediolateral column at upper thoracic and lower thoracic levels. Histological analysis revealed that ∼21% of RVLM bulbospinal neurons were retrogradely labelled by both vectors, indicating substantial axonal collateralization to disparate spinal segments. In functional experiments, another virus with retrograde tropism, a canine adenovirus expressing Cre recombinase, was injected into the left intermediolateral horn around the thoracolumbar junction, whereas a Cre-dependent viral vector encoding Channelrhodopsin2 under LoxP control was injected into the ipsilateral RVLM. In subsequent terminal experiments, blue laser light (473 nm × 20 ms pulses at 10 mW) was used to activate RVLM neurons that had been transduced by both vectors. Stimulus-locked activation, at appropriate latencies, was recorded in the following pairs of sympathetic nerves: forelimb and hindlimb muscle sympathetic fibres, as well as cardiac and either hindlimb muscle or lumbar sympathetic nerves. The latter result demonstrates that axon collaterals of lumbar-projecting RVLM neurons project to, and excite, both functionally similar (forelimb and hindlimb muscle) and functionally dissimilar (lumbar and cardiac) preganglionic neurons. Taken together, these findings show that the axons of a significant proportion of RVLM neurons collateralise widely within the spinal cord, and that they may excite preganglionic neurons of more than one functional class
The Role of B-cells and IgM Antibodies in Parasitemia, Anemia, and VSG Switching in Trypanosoma brucei–Infected Mice
African trypanosomes are extracellular parasitic protozoa, predominantly transmitted by the bite of the haematophagic tsetse fly. The main mechanism considered to mediate parasitemia control in a mammalian host is the continuous interaction between antibodies and the parasite surface, covered by variant-specific surface glycoproteins. Early experimental studies have shown that B-cell responses can be strongly protective but are limited by their VSG-specificity. We have used B-cell (µMT) and IgM-deficient (IgM−/−) mice to investigate the role of B-cells and IgM antibodies in parasitemia control and the in vivo induction of trypanosomiasis-associated anemia. These infection studies revealed that that the initial setting of peak levels of parasitemia in Trypanosoma brucei–infected µMT and IgM−/− mice occurred independent of the presence of B-cells. However, B-cells helped to periodically reduce circulating parasites levels and were required for long term survival, while IgM antibodies played only a limited role in this process. Infection-associated anemia, hypothesized to be mediated by B-cell responses, was induced during infection in µMT mice as well as in IgM−/− mice, and as such occurred independently from the infection-induced host antibody response. Antigenic variation, the main immune evasion mechanism of African trypanosomes, occurred independently from host antibody responses against the parasite's ever-changing antigenic glycoprotein coat. Collectively, these results demonstrated that in murine experimental T. brucei trypanosomiasis, B-cells were crucial for periodic peak parasitemia clearance, whereas parasite-induced IgM antibodies played only a limited role in the outcome of the infection
Central data monitoring in the multicentre randomised SafeBoosC-III trial:a pragmatic approach
Background: Data monitoring of clinical trials is a tool aimed at reducing the risks of random errors (e.g. clerical errors) and systematic errors, which include misinterpretation, misunderstandings, and fabrication. Traditional ‘good clinical practice data monitoring’ with on-site monitors increases trial costs and is time consuming for the local investigators. This paper aims to outline our approach of time-effective central data monitoring for the SafeBoosC-III multicentre randomised clinical trial and present the results from the first three central data monitoring meetings. Methods: The present approach to central data monitoring was implemented for the SafeBoosC-III trial, a large, pragmatic, multicentre, randomised clinical trial evaluating the benefits and harms of treatment based on cerebral oxygenation monitoring in preterm infants during the first days of life versus monitoring and treatment as usual. We aimed to optimise completeness and quality and to minimise deviations, thereby limiting random and systematic errors. We designed an automated report which was blinded to group allocation, to ease the work of data monitoring. The central data monitoring group first reviewed the data using summary plots only, and thereafter included the results of the multivariate Mahalanobis distance of each centre from the common mean. The decisions of the group were manually added to the reports for dissemination, information, correcting errors, preventing furture errors and documentation. Results: The first three central monitoring meetings identified 156 entries of interest, decided upon contacting the local investigators for 146 of these, which resulted in correction of 53 entries. Multiple systematic errors and protocol violations were identified, one of these included 103/818 randomised participants. Accordingly, the electronic participant record form (ePRF) was improved to reduce ambiguity. Discussion: We present a methodology for central data monitoring to optimise quality control and quality development. The initial results included identification of random errors in data entries leading to correction of the ePRF, systematic protocol violations, and potential protocol adherence issues. Central data monitoring may optimise concurrent data completeness and may help timely detection of data deviations due to misunderstandings or fabricated data.</p
Detailed statistical analysis plan for a secondary Bayesian analysis of the SafeBoosC-III trial: a multinational, randomised clinical trial assessing treatment guided by cerebral oximetry monitoring versus usual care in extremely preterm infants
Background: Extremely preterm infants have a high mortality and morbidity. Here, we present a statistical analysis plan for secondary Bayesian analyses of the pragmatic, sufficiently powered multinational, trial—SafeBoosC III—evaluating the benefits and harms of cerebral oximetry monitoring plus a treatment guideline versus usual care for such infants. Methods: The SafeBoosC-III trial is an investigator-initiated, open-label, randomised, multinational, pragmatic, phase III clinical trial with a parallel-group design. The trial randomised 1601 infants, and the frequentist analyses were published in April 2023. The primary outcome is a dichotomous composite outcome of death or severe brain injury. The exploratory outcomes are major neonatal morbidities associated with neurodevelopmental impairment later in life: (1) bronchopulmonary dysplasia; (2) retinopathy of prematurity; (3) late-onset sepsis; (4) necrotising enterocolitis; and (5) number of major neonatal morbidities (count of bronchopulmonary dysplasia, retinopathy of prematurity, and severe brain injury). The primary Bayesian analyses will use non-informed priors including all plausible effects. The models will use a Hamiltonian Monte Carlo sampler with 1 chain, a sampling of 10,000, and at least 25,000 iterations for the burn-in period. In Bayesian statistics, such analyses are referred to as ‘posteriors’ and will be presented as point estimates with 95% credibility intervals (CrIs), encompassing the most probable results based on the data, model, and priors selected. The results will be presented as probability of any benefit or any harm, Bayes factor, and the probability of clinical important benefit or harm. Two statisticians will analyse the blinded data independently following this protocol. Discussion: This statistical analysis plan presents a secondary Bayesian analysis of the SafeBoosC-III trial. The analysis and the final manuscript will be carried out and written after we publicise the primary frequentist trial report. Thus, we can interpret the findings from both the frequentists and Bayesian perspective. This approach should provide a better foundation for interpreting of our findings
Web-based training and certification of clinical staff during the randomised clinical trial SafeBoosC-III
Background: SafeBoosC-III is a pragmatic, multinational clinical trial evaluating cerebral oximetry-guided treatment for extremely preterm infants. In total, 1601 infants were randomised across 70 sites in Asia, Europe, and USA. To enhance data quality and patient care, a web-based training program was implemented for staff. We now report on the processes. Methods: All training modules consisted of initial learning material followed by a case-based quiz, with elaborate responses to correct as well as to wrong answers. Modules covered trial introduction, cerebral oximetry monitoring, treatment guidelines, cerebral ultrasound, and Good Clinical Practice. The introduction module was accessible in eight languages on an online platform, while language versions varied for other modules, due to different needs. Certification was earned upon module completion, relevant to the staff category. The training was not mandatory, but for motivational purposes, principal investigators continuously received local certification rate reports. Results: A total of 926 out of 2347 staff (39%) obtained certification. Amongst 295 staff who completed the evaluation, 83% rated the program as overall good and 94% found it relevant to clinical practice. Sites exhibited varying certification rates, with 10 at 0%, 43 between 0.1 and 79.9%, and 17 exceeding 80%. There was no correlation between the rate of certification in individual sites and how often the clinical management was changed due to cerebral hypoxia nor a correlation to site-specific estimates of the intervention effect. Conclusion: Despite language barriers and a low budget, our web-based training and certification program proved feasible. Only a minority of sites reached 80% certification of staff and an impact on the trial could not be detected. Trial registration: The SafeBoosC-III trial is registered at ClinicalTrials.gov NCT03770741. The first participant was randomised in June 2019 and recruitment was completed in December 2021
Recommended from our members
Screening of healthcare workers for SARS-CoV-2 highlights the role of asymptomatic carriage in COVID-19 transmission
Funder: Addenbrooke's Charitable Trust, Cambridge University Hospitals; FundRef: http://dx.doi.org/10.13039/501100002927Significant differences exist in the availability of healthcare worker (HCW) SARS-CoV-2 testing between countries, and existing programmes focus on screening symptomatic rather than asymptomatic staff. Over a 3 week period (April 2020), 1032 asymptomatic HCWs were screened for SARS-CoV-2 in a large UK teaching hospital. Symptomatic staff and symptomatic household contacts were additionally tested. Real-time RT-PCR was used to detect viral RNA from a throat+nose self-swab. 3% of HCWs in the asymptomatic screening group tested positive for SARS-CoV-2. 17/30 (57%) were truly asymptomatic/pauci-symptomatic. 12/30 (40%) had experienced symptoms compatible with coronavirus disease 2019 (COVID-19)>7 days prior to testing, most self-isolating, returning well. Clusters of HCW infection were discovered on two independent wards. Viral genome sequencing showed that the majority of HCWs had the dominant lineage B∙1. Our data demonstrates the utility of comprehensive screening of HCWs with minimal or no symptoms. This approach will be critical for protecting patients and hospital staff
Distinction of early complement classical and lectin pathway activation via quantification of C1s/C1-INH and MASP-1/C1-INH complexes using novel ELISAs
The most commonly used markers to assess complement activation are split products that are produced through activation of all three pathways and are located downstream of C3. In contrast, C4d derives from the cleavage of C4 and indicates either classical (CP) or lectin pathway (LP) activation. Although C4d is perfectly able to distinguish between CP/LP and alternative pathway (AP) activation, no well-established markers are available to differentiate between early CP and LP activation. Active enzymes of both pathways (C1s/C1r for the CP, MASP-1/MASP-2 for the LP) are regulated by C1 esterase inhibitor (C1-INH) through the formation of covalent complexes. Aim of this study was to develop validated immunoassays detecting C1s/C1-INH and MASP-1/C1-INH complex levels. Measurement of the complexes reveals information about the involvement of the respective pathways in complement-mediated diseases. Two sandwich ELISAs detecting C1s/C1-INH and MASP-1/C1-INH complex were developed and tested thoroughly, and it was investigated whether C1s/C1-INH and MASP-1/C1-INH complexes could serve as markers for either early CP or LP activation. In addition, a reference range for these complexes in healthy adults was defined, and the assays were clinically validated utilizing samples of 414 COVID-19 patients and 96 healthy controls. The immunoassays can reliably measure C1s/C1-INH and MASP-1/C1-INH complex concentrations in EDTA plasma from healthy and diseased individuals. Both complex levels are increased in serum when activated with zymosan, making them suitable markers for early classical and early lectin pathway activation. Furthermore, measurements of C1-INH complexes in 96 healthy adults showed normally distributed C1s/C1-INH complex levels with a physiological concentration of 1846 ± 1060 ng/mL (mean ± 2SD) and right-skewed distribution of MASP-1/C1-INH complex levels with a median concentration of 36.9 (13.18 - 87.89) ng/mL (2.5-97.5 percentile range), while levels of both complexes were increased in COVID-19 patients (p<0.0001). The newly developed assays measure C1-INH complex levels in an accurate way. C1s/C1-INH and MASP-1/C1-INH complexes are suitable markers to assess early classical and lectin pathway activation. An initial reference range was set and first studies showed that these markers have added value for investigating and unraveling complement activation in human disease
Complement lectin pathway activation is associated with COVID-19 disease severity, independent of MBL2 genotype subgroups
IntroductionWhile complement is a contributor to disease severity in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, all three complement pathways might be activated by the virus. Lectin pathway activation occurs through different pattern recognition molecules, including mannan binding lectin (MBL), a protein shown to interact with SARS-CoV-2 proteins. However, the exact role of lectin pathway activation and its key pattern recognition molecule MBL in COVID-19 is still not fully understood.MethodsWe therefore investigated activation of the lectin pathway in two independent cohorts of SARS-CoV-2 infected patients, while also analysing MBL protein levels and potential effects of the six major single nucleotide polymorphisms (SNPs) found in the MBL2 gene on COVID-19 severity and outcome.ResultsWe show that the lectin pathway is activated in acute COVID-19, indicated by the correlation between complement activation product levels of the MASP-1/C1-INH complex (p=0.0011) and C4d (p<0.0001) and COVID-19 severity. Despite this, genetic variations in MBL2 are not associated with susceptibility to SARS-CoV-2 infection or disease outcomes such as mortality and the development of Long COVID.ConclusionIn conclusion, activation of the MBL-LP only plays a minor role in COVID-19 pathogenesis, since no clinically meaningful, consistent associations with disease outcomes were noted
Brainstem neurochemical profiles after hospitalisation for COVID-19: a 7T MR spectroscopy study
BackgroundSomatic, cognitive and mental health issues have been identified in three-quarters of people 5 months after hospitalisation for severe acute SARS-CoV-2 (COVID-19) infection. The underlying neuroanatomical basis of these symptoms remains unclear, but recent studies suggest a role for altered brainstem physiology. We aimed to test the hypothesis that brainstem neurochemical profiles differ in patients who had been hospitalised for COVID-19 compared to matched controls using 7T magnetic resonance spectroscopy (MRS).MethodsThis prospective case–control study recruited 34 individuals who were hospitalised for COVID-19 and 15 healthy controls with no history of COVID-19 infection from two major UK hospitals before vaccines became available. The participants underwent 7T semi-adiabatic localization by adiabatic selective refocusing (sLASER) 1H-MRS at the ponto-medullary junction. Water-referenced metabolite concentrations were compared between the patients and controls and correlated with infection severity, as measured by maximum C-reactive protein (CRPmax) assay during inpatient admission. Linear mixed modelling was used with a 0.05 significance level.ResultsSpectral quality was high/acceptable in 44/49 participants according to the MRS Consensus criteria. The magnitude of inflammation during patient admission (i.e., CRPmax) correlated positively with myo-inositol concentration (β = 0.005, p = 0.035), as did patient-reported symptoms (β = −0.564, p = 0.023). However, metabolite concentrations were not significantly different between the patients and controls.ConclusionWe show the feasibility of assessing brainstem neurochemical profiles using 7T 1H-MRS in a multi-centre study. Technical limitations at one site’s 7T MRI led to variable repetition times, which limited our statistical power and should be avoided in future studies. Our findings highlight the need for further investigation into the role of neuroinflammation in post-acute COVID-19
- …
