387 research outputs found
Combined neutron reflectometry and rheology
We have combined neutron reflectometry with rheology in order to investigate
the solid boundary of liquids and polymers under shear deformation. Our
approach allows one to apply a controlled stress to a material while resolving
the structural arrangements on the sub nanometer length scale with neutron
reflectivity, off-specular and small angle scattering at the same time. The
specularly reflected neutron intensity of a 20 % by weight solution of the
Pluronic F127 in deuterated water is evaluated. We find pronounced changes in
the near interface structure under applied deformation for surfaces with
different surface energies, which are correlated with changes in the storage
and loss modulus
Recent developments of MCViNE and its applications at SNS
MCViNE is an open source, object-oriented Monte Carlo neutron ray-tracing simulation software package. Its design allows for flexible, hierarchical representations of sophisticated instrument components such as detector systems, and samples with a variety of shapes and scattering kernels. Recently this flexible design has enabled several applications of MCViNE simulations at the Spallation Neutron Source (SNS) at Oak Ridge National Lab, including assisting design of neutron instruments at the second target station and design of novel sample environments, as well as studying effects of instrument resolution and multiple scattering. Here we provide an overview of the recent developments and new features of MCViNE since its initial introduction (Jiao et al 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 810, 86–99), and some example applications
Correlation between microstructure and magnetotransport in organic semiconductor spin valve structures
We have studied magnetotransport in organic-inorganic hybrid multilayer
junctions. In these devices, the organic semiconductor (OSC) Alq
(tris(8-hydroxyquinoline) aluminum) formed a spacer layer between ferromagnetic
(FM) Co and Fe layers. The thickness of the Alq layer was in the range of
50-150 nm. Positive magnetoresistance (MR) was observed at 4.2 K in a current
perpendicular to plane geometry, and these effects persisted up to room
temperature. The devices' microstructure was studied by X-ray reflectometry,
Auger electron spectroscopy and polarized neutron reflectometry (PNR). The
films show well-defined layers with modest average chemical roughness (3-5 nm)
at the interface between the Alq and the surrounding FM layers.
Reflectometry shows that larger MR effects are associated with smaller
FM/Alq interface width (both chemical and magnetic) and a magnetically dead
layer at the Alq/Fe interface. The PNR data also show that the Co layer,
which was deposited on top of the Alq, adopts a multi-domain magnetic
structure at low field and a perfect anti-parallel state is not obtained. The
origins of the observed MR are discussed and attributed to spin coherent
transport. A lower bound for the spin diffusion length in Alq was estimated
as nm at 80 K. However, the subtle correlations between
microstructure and magnetotransport indicate the importance of interfacial
effects in these systems.Comment: 21 pages, 11 figures and 2 table
Spin-polarized neutron reflectivity: A probe of vortices in thin-film superconductors
URL:http://link.aps.org/doi/10.1103/PhysRevB.59.14692
DOI:10.1103/PhysRevB.59.14692It is demonstrated that the specular reflectivity of spin-polarized neutrons can be used to study vortices in a thin-film superconductor. Experiments were performed on a 6000 Å thick c-axis film of YBa2Cu3O7-x with the magnetic field applied parallel to the surface. A magnetic hysteresis loop was observed for the spin-polarized reflection and, from these data, the average density of vortices was extracted. A model is presented which relates the specular reflectivity to the one-dimensional spatial distribution of vortices in the direction perpendicular to the surface. Unlike other techniques, neutron reflectivity observes vortices in a geometry where they are parallel to the interface.Support ~P.F.M., S.W.H.! from the Midwest Superconductivity Consortium ~MISCON! under the U.S. DOE Grant No. DE-FG02-90ER45427, the NSF DMR Grant No. 96-23827, and ~L.H.G., E.P.! from the NSF DMR Grant No. 94-21957, and ONR Grant No. N-00014-95-1-0831 is gratefully acknowledged. We thank E. Fullerton for useful discussions and D.H. Lowndes for help in understanding the surface
roughness of oxide superconductors
Ferromagnetic Domain Distribution in Thin Films During Magnetization Reversal
We have shown that polarized neutron reflectometry can determine in a
model-free way not only the mean magnetization of a ferromagnetic thin film at
any point of a hysteresis cycle, but also the mean square dispersion of the
magnetization vectors of its lateral domains. This technique is applied to
elucidate the mechanism of the magnetization reversal of an exchange-biased
Co/CoO bilayer. The reversal process above the blocking temperature is governed
by uniaxial domain switching, while below the blocking temperature the reversal
of magnetization for the trained sample takes place with substantial domain
rotation
Annealing-Dependent Magnetic Depth Profile in Ga[1-x]Mn[x]As
We have studied the depth-dependent magnetic and structural properties of
as-grown and optimally annealed Ga[1-x]Mn[x]As films using polarized neutron
reflectometry. In addition to increasing total magnetization, the annealing
process was observed to produce a significantly more homogeneous distribution
of the magnetization. This difference in the films is attributed to the
redistribution of Mn at interstitial sites during the annealing process. Also,
we have seen evidence of significant magnetization depletion at the surface of
both as-grown and annealed films.Comment: 5 pages, 3 figure
Wavelet Inverse Neutron Scattering Study of Layered Metallic NiC-Ti Composites
Composites are prevalent in high technology devices such as aircraft, computers, automobiles and communications systems. They improve brittleness and provide a lower density which enhances mechanical strength. Electron and light manipulating composites will be used more and more in the future. It is necessary to have a capability of inspecting composites, both to assure production quality and as a baseline for later NDE. In this paper, we present a study using wavelet, inverse neutron optics and the grazing angle neutron spectrometer, GANS, at the Missouri University Research Reactor, MURR
An EDSL approach to high performance Haskell programming
This paper argues for a new methodology for writing high per-formance Haskell programs by using Embedded Domain Specific Languages. We exemplify the methodology by describing a complete li-brary, meta-repa, which is a reimplementation of parts of the repa library. The paper describes the implementation of meta-repa and contrasts it with the standard approach to writing high performance libraries. We conclude that even though the embedded language approach has an initial cost of defining the language and some syntactic overhead it gives a more tailored programming model, stronger performance guarantees, better control over optimizations, simpler implementation of fusion and inlining and allows for mov-ing type level programming down to value level programming in some cases. We also provide benchmarks showing that meta-repa is as fast, or faster, than repa. Furthermore, meta-repa also includes push arrays and we demonstrate their usefulness for writing certain high performance kernels such as FFT
Dynamic Masking Rate Schedules for MLM Pretraining
Most works on transformers trained with the Masked Language Modeling (MLM)
objective use the original BERT model's fixed masking rate of 15%. Our work
instead dynamically schedules the masking ratio throughout training. We found
that linearly decreasing the masking rate from 30% to 15% over the course of
pretraining improves average GLUE accuracy by 0.46% in BERT-base, compared to a
standard 15% fixed rate. Further analyses demonstrate that the gains from
scheduling come from being exposed to both high and low masking rate regimes.
Our results demonstrate that masking rate scheduling is a simple way to improve
the quality of masked language models and achieve up to a 1.89x speedup in
pretraining
- …
