191 research outputs found
Metabolomics of dates (Phoenix dactylifera) reveals a highly dynamic ripening process accounting for major variation in fruit composition
BACKGROUND: Dates are tropical fruits with appreciable nutritional value. Previous attempts at global metabolic characterization of the date metabolome were constrained by small sample size and limited geographical sampling. In this study, two independent large cohorts of mature dates exhibiting substantial diversity in origin, varieties and fruit processing conditions were measured by metabolomics techniques in order to identify major determinants of the fruit metabolome. RESULTS: Multivariate analysis revealed a first principal component (PC1) significantly associated with the dates’ countries of production. The availability of a smaller dataset featuring immature dates from different development stages served to build a model of the ripening process in dates, which helped reveal a strong ripening signature in PC1. Analysis revealed enrichment in the dry type of dates amongst fruits with early ripening profiles at one end of PC1 as oppose to an overrepresentation of the soft type of dates with late ripening profiles at the other end of PC1. Dry dates are typical to the North African region whilst soft dates are more popular in the Gulf region, which partly explains the observed association between PC1 and geography. Analysis of the loading values, expressing metabolite correlation levels with PC1, revealed enrichment patterns of a comprehensive range of metabolite classes along PC1. Three distinct metabolic phases corresponding to known stages of date ripening were observed: An early phase enriched in regulatory hormones, amines and polyamines, energy production, tannins, sucrose and anti-oxidant activity, a second phase with on-going phenylpropanoid secondary metabolism, gene expression and phospholipid metabolism and a late phase with marked sugar dehydration activity and degradation reactions leading to increased volatile synthesis. CONCLUSIONS: These data indicate the importance of date ripening as a main driver of variation in the date metabolome responsible for their diverse nutritional and economical values. The biochemistry of the ripening process in dates is consistent with other fruits but natural dryness may prevent degenerative senescence in dates following ripening. Based on the finding that mature dates present varying extents of ripening, our survey of the date metabolome essentially revealed snapshots of interchanging metabolic states during ripening empowering an in-depth characterization of underlying biology. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12870-015-0672-5) contains supplementary material, which is available to authorized users
Estimation of Immune Cell Densities in Immune Cell Conglomerates: An Approach for High-Throughput Quantification
Determining the correct number of positive immune cells in immunohistological sections of colorectal cancer and other tumor entities is emerging as an important clinical predictor and therapy selector for an individual patient. This task is usually obstructed by cell conglomerates of various sizes. We here show that at least in colorectal cancer the inclusion of immune cell conglomerates is indispensable for estimating reliable patient cell counts. Integrating virtual microscopy and image processing principally allows the high-throughput evaluation of complete tissue slides.For such large-scale systems we demonstrate a robust quantitative image processing algorithm for the reproducible quantification of cell conglomerates on CD3 positive T cells in colorectal cancer. While isolated cells (28 to 80 microm(2)) are counted directly, the number of cells contained in a conglomerate is estimated by dividing the area of the conglomerate in thin tissues sections (< or =6 microm) by the median area covered by an isolated T cell which we determined as 58 microm(2). We applied our algorithm to large numbers of CD3 positive T cell conglomerates and compared the results to cell counts obtained manually by two independent observers. While especially for high cell counts, the manual counting showed a deviation of up to 400 cells/mm(2) (41% variation), algorithm-determined T cell numbers generally lay in between the manually observed cell numbers but with perfect reproducibility.In summary, we recommend our approach as an objective and robust strategy for quantifying immune cell densities in immunohistological sections which can be directly implemented into automated full slide image processing systems
No Significant Bone Resorption after Open Treatment of Mandibular Condylar Head Fractures in the Medium-Term
Open treatment of condylar head fractures (CHF) is considered controversial. In this retrospective cohort study our primary objective was therefore to assess bone resorption and remodeling as well as patients function after open treatment of CHF in a medium-term follow-up (15.1 ± 2.2 months). We included 18 patients with 25 CHF who underwent open reduction and internal fixation, between 2016 and 2021, in our analysis. The clinical data and cone-beam computed tomography (CBCT) datasets were analyzed. The condylar processes were segmented in the postoperative (T1) and follow-up (T2) CBCT scans. Volumetric and linear bone changes were the primary outcome variables, measured by using a sophisticated 3D-algorithm. The mean condylar head volume decreased non-significantly from 3022.01 ± 825.77 mm3 (T1) to 2878.8 ± 735.60 mm3 (T2; p = 0.52). Morphological alterations indicated remodeling and resorption. The pre-operative maximal interincisal opening (MIO) was 19.75 ± 3.07 mm and significantly improved to 40.47 ± 1.7 mm during follow-up (p = 0.0005). Low rates of postoperative complications were observed. Open reduction of CHF leads to good clinical outcomes and low rates of medium-term complications. This study underlines the feasibility and importance of open treatment of CHF and may help to spread its acceptance as the preferred treatment option
Effect of induced hypoglycemia on inflammation and oxidative stress in type 2 diabetes and control subjects
Intensive diabetes control has been associated with increased mortality in type 2 diabetes (T2DM); this has been suggested to be due to increased hypoglycemia. We measured hypoglycemia-induced changes in endothelial parameters, oxidative stress markers and inflammation at baseline and after a 24-hour period in type 2 diabetic (T2DM) subjects versus age-matched controls. Case-control study: 10 T2DM and 8 control subjects. Blood glucose was reduced from 5 (90 mg/dl) to hypoglycemic levels of 2.8 mmol/L (50 mg/dl) for 1 hour by incremental hyperinsulinemic clamps using baseline and 24 hour samples. Measures of endothelial parameters, oxidative stress and inflammation at baseline and at 24-hours post hypoglycemia were performed: proteomic (Somalogic) analysis for inflammatory markers complemented by C-reactive protein (hsCRP) measurement, and proteomic markers and urinary isoprostanes for oxidative measures, together with endothelial function. Between baseline and 24 -hours after hypoglycemia, 15 of 140 inflammatory proteins differed in T2DM whilst only 1 of 140 differed in controls; all returned to baseline at 24-hours. However, elevated hsCRP levels were seen at 24-hours in T2DM (2.4 mg/L (1.2–5.4) vs. 3.9 mg/L (1.8–6.1), Baseline vs 24-hours, P < 0.05). In patients with T2DM, between baseline and 24-hour after hypoglycemia, only one of 15 oxidative stress proteins differed and this was not seen in controls. An increase (P = 0.016) from baseline (73.4 ng/mL) to 24 hours after hypoglycemia (91.7 ng/mL) was seen for urinary isoprostanes. Hypoglycemia resulted in inflammatory and oxidative stress markers being elevated in T2DM subjects but not controls 24-hours after the event
Author Correction: Effect of induced hypoglycemia on inflammation and oxidative stress in type 2 diabetes and control subjects (Scientific Reports, (2020), 10, 1, (4750), 10.1038/s41598-020-61531-z)
© 2020, The Author(s). The original version of this Article contained a typographical error in the spelling of the author Johannes Graumann, which was incorrectly given as Johannes Grauman. This has now been corrected in the PDF and HTML versions of the Article, and in the accompanying Supplementary Information file
Recommended from our members
Progesterone induces meiosis through two obligate co-receptors with PLA2 activity
The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality. Despite the established physiological importance of P4 nongenomic signaling, the details of its signal transduction cascade remain elusive. Here, using Xenopus oocyte maturation as a well-established physiological readout of nongenomic P4 signaling, we identify the lipid hydrolase ABHD2 (α/β hydrolase domain-containing protein 2) as an essential mPRβ co-receptor to trigger meiosis. We show using functional assays coupled to unbiased and targeted cell-based lipidomics that ABHD2 possesses a phospholipase A2 (PLA2) activity that requires mPRβ. This PLA2 activity bifurcates P4 signaling by inducing clathrin-dependent endocytosis of mPRβ, resulting in the production of lipid messengers that are G-protein coupled receptor agonists. Therefore, P4 drives meiosis by inducing an ABHD2 PLA2 activity that requires both mPRβ and ABHD2 as obligate co-receptors
Association of microRNAs With Embryo Development and Fertilization in Women Undergoing Subfertility Treatments: A Pilot Study
Objective: Small non-coding RNAs, known as microRNAs (miRNAs), have emerging regulatory functions within the ovary that have been related to fertility. This study was undertaken to determine if circulating miRNAs reflect the changes associated with the parameters of embryo development and fertilization. Methods: In this cross-sectional pilot study. Plasma miRNAs were collected from 48 sequentially presenting women in the follicular phase prior to commencing in vitro fertilization (IVF). Circulating miRNAs were measured using locked nucleic acid (LNA)-based quantitative PCR (qPCR), while an updated miRNA data set was used to determine their level of expression. Results: Body mass index and weight were associated with the miRNAs let7b-3p and miR-375, respectively (p < 0.05), with the same relationship being found between endometrium thickness at oocyte retrieval and miR-885-5p and miR-34a-5p (p < 0.05). In contrast, miR-1260a was found to be inversely associated with anti-Mullerian hormone (AMH; p = 0.007), while miR-365a-3p, miR122-5p, and miR-34a-5p correlated with embryo fertilization rates (p < 0.05). However, when omitting cases of male infertility (n = 15), miR122-5p remained significant (p < 0.05), while miR-365a-3p and miR-34a-5p no longer differed; interestingly, however, miR1260a and mir93.3p became significant (p = 0.0087/0.02, respectively). Furthermore, age was negatively associated with miR-335-3p, miR-28-5p, miR-155-5p, miR-501-3p, and miR-497-5p (p < 0.05). Live birth rate was negatively associated with miR-335-3p, miR-100-5p, miR-497-5p, let-7d, and miR-574-3p (p < 0.05), but these were not significant when age was accounted for.However, with the exclusion of male factor infertility, all those miRNAs were no longer significant, though miR.150.5p emerged as significant (p = 0.042). A beta-regression model identified miR-1260a, miR-486-5p, and miR-132-3p (p < 0.03, p = 0.0003, p < 0.00001, respectively) as the most predictive for fertilization rate. Notably, changes in detectable miRNAs were not linked to cleavage rate, top quality embryos (G3D3), and blastocyst or antral follicle count. An ingenuity pathway analysis showed that miRNAs associated with age were also associated with the variables found in reproductive system diseases. Conclusion: Plasma miRNAs prior to the IVF cycle were associated with differing demographic and IVF parameters, including age, and may be predictive biomarkers of fertilization rate
Metabolomics of Dynamic Changes in Insulin Resistance Before and After Exercise in PCOS
Background: Plasma elevated levels of branched chain amino acids (BCAA) and aromatic amino acids (AAA) have been associated with obesity and insulin resistance, but their relationship to stimulated insulin resistance (IR) in PCOS and in response to exercise is unknown. Indeed, it is unknown whether the mechanism of IR in PCOS is mediated through changes in the metabolome.Methods: Twelve women with polycystic ovary syndrome (PCOS) and ten age and body mass index matched controls completed an 8 week supervised exercise program at 60% maximal oxygen consumption. Before and after the exercise program, all participants underwent maximal IR stimulation with intralipid infusions followed by insulin sensitivity (IS) measurement by hyperinsulinaemic euglycaemic clamps. Amino acid profiles and metabolites were taken at baseline and at maximal insulin resistance stimulation before and after the exercise program.Results: At baseline, PCOS subjects showed increased leucine/isoleucine, glutamate, methionine, ornithine, phenylalanine, tyrosine and proline (p < 0.05) that, following exercise, did not differ from controls. While compering within the groups, no significant changes in the amino acid levels before and after exercise were observed. Exercise improved VO2 max (p < 0.01) but did not alter weight. Amino acid profiles were unaffected by an acute increase in IR induced by the lipid infusion. IS was lower in PCOS (p < 0.001) and was further decreased by the lipid infusion in both PCOS and controls. Although, exercise improved IS in both PCOS and in controls, the IS remained compromised in PCOS.Conclusion: The baseline amino acid profile in PCOS reflected that seen in obese subjects and differed to controls. After exercise, and despite no change in weight in either group, there were no differences in the amino acid profile between PCOS and controls. This shows that exercise may normalize the amino acid metabolome, irrespective of weight.ISRCTN number: ISRCTN4244881
Characterization of exercise-induced hemolysis in endurance horses
Exercise-induced hemolysis occurs as the result of intense physical exercise and is caused by metabolic and mechanical factors including repeated muscle contractions leading to capillary vessels compression, vasoconstriction of internal organs and foot strike among others. We hypothesized that exercise-induced hemolysis occurred in endurance racehorses and its severity was associated with the intensity of exercise. To provide further insight into the hemolysis of endurance horses, the aim of the study was to deployed a strategy for small molecules (metabolites) profiling, beyond standard molecular methods. The study included 47 Arabian endurance horses competing for either 80, 100, or 120 km distances. Blood plasma was collected before and after the competition and analyzed macroscopically, by ELISA and non-targeted metabolomics with liquid chromatography–mass spectrometry. A significant increase in all hemolysis parameters was observed after the race, and an association was found between the measured parameters, average speed, and distance completed. Levels of hemolysis markers were highest in horses eliminated for metabolic reasons in comparison to finishers and horses eliminated for lameness (gait abnormality), which may suggest a connection between the intensity of exercise, metabolic challenges, and hemolysis. Utilization of omics methods alongside conventional methods revealed a broader insight into the exercise-induced hemolysis process by displaying, apart from commonly measured hemoglobin and haptoglobin, levels of hemoglobin degradation metabolites. Obtained results emphasized the importance of respecting horse limitations in regard to speed and distance which, if underestimated, may lead to severe damages
Proteomic analysis of 92 circulating proteins and their effects in cardiometabolic diseases
Background: Human plasma contains a wide variety of circulating proteins. These proteins can be important clinical biomarkers in disease and also possible drug targets. Large scale genomics studies of circulating proteins can identify genetic variants that lead to relative protein abundance. Methods: We conducted a meta-analysis on genome-wide association studies of autosomal chromosomes in 22,997 individuals of primarily European ancestry across 12 cohorts to identify protein quantitative trait loci (pQTL) for 92 cardiometabolic associated plasma proteins. Results: We identified 503 (337 cis and 166 trans) conditionally independent pQTLs, including several novel variants not reported in the literature. We conducted a sex-stratified analysis and found that 118 (23.5%) of pQTLs demonstrated heterogeneity between sexes. The direction of effect was preserved but there were differences in effect size and significance. Additionally, we annotate trans-pQTLs with nearest genes and report plausible biological relationships. Using Mendelian randomization, we identified causal associations for 18 proteins across 19 phenotypes, of which 10 have additional genetic colocalization evidence. We highlight proteins associated with a constellation of cardiometabolic traits including angiopoietin-related protein 7 (ANGPTL7) and Semaphorin 3F (SEMA3F). Conclusion: Through large-scale analysis of protein quantitative trait loci, we provide a comprehensive overview of common variants associated with plasma proteins. We highlight possible biological relationships which may serve as a basis for further investigation into possible causal roles in cardiometabolic diseases
- …
