67 research outputs found

    Levels of Heavy Metals in Adolescents Living in the Industrialised Area of Milazzo-Valle del Mela (Northern Sicily)

    Get PDF
    In the Milazzo-Valle del Mela area, the presence of industrial plants and the oil refinery make local residents concerned for their health. For this reason, we evaluated the levels of heavy metals in 226 children aged 12–14 years, living in the 7 municipalities of the area. A control age-matched population (n=29) living 45 km far from the industrial site was also enrolled. Arsenic, cadmium, chromium, mercury, nickel, and vanadium were analysed in 24 h urine samples, while lead concentration was evaluated in blood samples. A questionnaire regarding life style and risk perception was also administered. Adolescents from Milazzo-Valle del Mela had cadmium levels significantly higher compared to either controls  (P<0.0001) or the reference values of the European Germany Environmental Survey (GerES-IV) and the American National Health and Nutrition Examination Survey (NHANES). Furthermore, children had higher perception of living in a high-risk environment. The present data, for the first time, clearly indicate that adolescents living in Milazzo-Valle del Mela have increased body concentration of cadmium, which may be harmful to human health. These results deserve particular attention by the local and regional government to initiate prevention programmes in this susceptible population

    Incidence, Risk Factors and Outcome of Pre-engraftment Gram-Negative Bacteremia after Allogeneic and Autologous Hematopoietic Stem Cell Transplantation: An Italian Prospective Multicenter Survey

    Get PDF
    Background Gram-negative bacteremia (GNB) is a major cause of illness and death after hematopoietic stem cell transplantation (HSCT), and updated epidemiological investigation is advisable. Methods We prospectively evaluated the epidemiology of pre-engraftment GNB in 1118 allogeneic HSCTs (allo-HSCTs) and 1625 autologous HSCTs (auto-HSCTs) among 54 transplant centers during 2014 (SIGNB-GITMO-AMCLI study). Using logistic regression methods. we identified risk factors for GNB and evaluated the impact of GNB on the 4-month overall-survival after transplant. Results The cumulative incidence of pre-engraftment GNB was 17.3% in allo-HSCT and 9% in auto-HSCT. Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa were the most common isolates. By multivariate analysis, variables associated with GNB were a diagnosis of acute leukemia, a transplant from a HLA-mismatched donor and from cord blood, older age, and duration of severe neutropenia in allo-HSCT, and a diagnosis of lymphoma, older age, and no antibacterial prophylaxis in auto-HSCT. A pretransplant infection by a resistant pathogen was significantly associated with an increased risk of posttransplant infection by the same microorganism in allo-HSCT. Colonization by resistant gram-negative bacteria was significantly associated with an increased rate of infection by the same pathogen in both transplant procedures. GNB was independently associated with increased mortality at 4 months both in allo-HSCT (hazard ratio, 2.13; 95% confidence interval, 1.45-3.13; P &lt;.001) and auto-HSCT (2.43; 1.22-4.84; P =.01). Conclusions Pre-engraftment GNB is an independent factor associated with increased mortality rate at 4 months after auto-HSCT and allo-HSCT. Previous infectious history and colonization monitoring represent major indicators of GNB. Clinical Trials registration NCT02088840

    Blockade of the JNK Signalling as a Rational Therapeutic Approach to Modulate the Early and Late Steps of the Inflammatory Cascade in Polymicrobial Sepsis

    Full text link
    Cecal ligation and puncture (CLP) is an experimental polymicrobial sepsis induced systemic inflammation that leads to acute organ failure. Aim of our study was to evaluate the effects of SP600125, a specific c-Jun NH2-terminal kinase (JNK) inhibitor, to modulate the early and late steps of the inflammatory cascade in a murine model of CLP-induced sepsis. CB57BL/6J mice were subjected to CLP or sham operation. Animals were randomized to receive either SP600125 (15 mg/kg) or its vehicle intraperitoneally 1 hour after surgery and repeat treatment every 24 hours. To evaluate survival, a group of animals was monitored every 24 hours for 120 hours. Two other animals were sacrificed 4 or 18 hours after surgical procedures; lung and liver samples were collected for biomolecular and histopathologic analysis. The expression of p-JNK, p-ERK, TNF-α, HMGB-1, NF-κB, Ras, Rho, Caspase 3, Bcl-2, and Bax was evaluated in lung and liver samples; SP600125 improved survival, reduced CLP induced activation of JNK, NF-κB, TNF-α, and HMGB-1, inhibited proapoptotic pathway, preserved Bcl-2 expression, and reduced histologic damage in both lung and liver of septic mice. SP600125 protects against CLP induced sepsis by blocking JNK signalling; therefore, it can be considered a therapeutic approach in human sepsis

    Beta-Blocker Use in Older Hospitalized Patients Affected by Heart Failure and Chronic Obstructive Pulmonary Disease: An Italian Survey From the REPOSI Register

    Get PDF
    Beta (β)-blockers (BB) are useful in reducing morbidity and mortality in patients with heart failure (HF) and concomitant chronic obstructive pulmonary disease (COPD). Nevertheless, the use of BBs could induce bronchoconstriction due to β2-blockade. For this reason, both the ESC and GOLD guidelines strongly suggest the use of selective β1-BB in patients with HF and COPD. However, low adherence to guidelines was observed in multiple clinical settings. The aim of the study was to investigate the BBs use in older patients affected by HF and COPD, recorded in the REPOSI register. Of 942 patients affected by HF, 47.1% were treated with BBs. The use of BBs was significantly lower in patients with HF and COPD than in patients affected by HF alone, both at admission and at discharge (admission, 36.9% vs. 51.3%; discharge, 38.0% vs. 51.7%). In addition, no further BB users were found at discharge. The probability to being treated with a BB was significantly lower in patients with HF also affected by COPD (adj. OR, 95% CI: 0.50, 0.37-0.67), while the diagnosis of COPD was not associated with the choice of selective β1-BB (adj. OR, 95% CI: 1.33, 0.76-2.34). Despite clear recommendations by clinical guidelines, a significant underuse of BBs was also observed after hospital discharge. In COPD affected patients, physicians unreasonably reject BBs use, rather than choosing a β1-BB. The expected improvement of the BB prescriptions after hospitalization was not observed. A multidisciplinary approach among hospital physicians, general practitioners, and pharmacologists should be carried out for better drug management and adherence to guideline recommendations

    Defect level characterization of silicon nanowire arrays: Towards novel experimental paradigms

    No full text
    The huge amount of knowledge, and infrastructures, brought by silicon (Si) technology, make Si Nanowires (NWs) an ideal choice for nano-electronic Si-based devices. This, in turn, challenges the scientific research to adapt the technical and theoretical paradigms, at the base of established experimental techniques, in order to probe the properties of these systems. Metal-assisted wet-Chemical Etching (MaCE) [1, 2] is a promising fast, easy and cheap method to grow high aspect-ratio aligned Si NWs. Further, contrary to other fabrication methods, this method avoids the possible detrimental effects related to Au diffusion into NWs. We investigated the bandgap level diagram of MaCE Si NW arrays, phosphorous-doped, by means of Deep Level Transient Spectroscopy. The presence of both shallow and deep levels has been detected. The results have been examined in the light of the specificity of the MaCE growth. The study of the electronic levels in Si NWs is, of course, of capital importance in view of the integration of Si NW arrays as active layers in actual devices

    Properties of Si nanowires as a function of their growth conditions

    No full text
    Silicon nanowires physical properties strongly depend on their growth conditions, as already assessed. We report on the electrical properties of nanowires (NWs) grown by the vapor–liquid–solid (VLS) mechanism, one of the most established for NW growth, and by the more recent metal-assisted wet chemical etching (MaCE).Wet etching growth process promises to be an industrial advantageous way for growing Si NWs, because of its cheapness, fastness, relative easiness. The electronic level scheme in VLS grown, boron (B)- and phosphorus (P)-doped NWs has been experimentally investigated. We have demonstrated that the doping impurities induce the same shallow levels as in bulk silicon. The presence of two donor levels in the lower half-bandgap is also revealed, which has been successfully related to VLS growth details. We report, also, on the first results on the physical properties of Si NW arrays grown by MaCE, and compare them to those of VLS grown Si NWs

    Impact of Processing Conditions on the Level Scheme of Silicon Nanowires Synthesized by Top-Down Techniques

    No full text
    Massive and reliable synthesis of semiconductor NWs is an essential pre-requisite for the stepping out from the proof-of-concept stage towards real-world manufacturing of NW-based devices. In this respect it becomes of main concern to answer the question of how growth conditions could introduce point and/or extended defects into NW inner structures, mirroring themselves into the NW level schemes, and finally affecting NW-based device performances. We report here on the investigation of electrically active defects of Si NWs fabricated by two different top-down techniques, Reactive Ion Etching (RIE) [1] (Fig. 1a) and Metal-Assisted wet Chemical Etching (MaCE) [2] (Fig1b), by means of Deep Level Transient Spectroscopy (DLTS). Our studies reveal the existence of intra-gap levels induced during the Si NWs growth in both cases. We discuss their origin in cross-reference with the different physical mechanisms underlying the samples\u2019 processing features. Differently from the case of MaCE Si NWs, the low density of RIE etched Si NWs has led us to develop a procedure in order to realize the Schottky barrier junction which is the conditio-sine-qua-non for performing DLTS characterization. Since the same procedure can be adopted for DLTS-probing of NW arrays under every density condition, this in turn opens the way to the systematic study of electrically active defects in semiconductor NWs by means of the sophisticated DLTS technique, of far-reaching consequence about defect characterization in semiconductor NWs. [1] S. Leopold et al., J. Vac. Sci. Technol. B, 29, 011002 (2011). [2] A. Irrera et al., Nanotechnology, 23, 075204 (2012)
    corecore