17 research outputs found
The interplay of Criterion A of the Alternative Model for Personality Disorders, mentalization and resilience during the COVID-19 pandemic
Background and aims: The COVID-19 pandemic has been accompanied by a worsening of mental health levels in some, while others manage to adapt or recover relatively quickly. Transdiagnostic factors such as personality functioning are thought to be involved in determining mental health outcomes. The present study focused on two constructs of personality functioning, Criterion A of the Alternative Model for Personality Disorders (AMPD, DSM-5) and mentalization, as predictors of depressive symptoms and life satisfaction during the COVID-19 pandemic. A second focus of the study was to examine whether this relationship was mediated by resilience. Methods: Linear regression analyses were used to examine the relationship between personality functioning measured by Criterion A (AMPD, DSM-5) and mentalizing abilities as predictors, and depression and life satisfaction as mental health outcomes. To assess the hypothesis that this relationship is mediated by resilience a structural equation modeling approach was conducted. Data from N = 316 individuals from the general population were collected. Results: Linear regression models revealed highly significant associations between Criterion A/mentalization and both outcome measures. Structural equation models showed a significant partial mediation by resilience of these relationships. Conclusion: Our results support the hypothesis that mentalizing serves as a protective function by promoting resilience to the impact of stress and threats. Criterion A and mentalization performed similarly as predictors of mental health outcomes, providing empirically overlapping operationalizations of personality functioning. This finding emphasizes the importance of personality functioning in positive and negative mental health outcomes. Furthermore, our results are consistent with a mediating role of resilience
Genome-Wide Association Studies in an Isolated Founder Population from the Pacific Island of Kosrae
It has been argued that the limited genetic diversity and reduced allelic heterogeneity observed in isolated founder populations facilitates discovery of loci contributing to both Mendelian and complex disease. A strong founder effect, severe isolation, and substantial inbreeding have dramatically reduced genetic diversity in natives from the island of Kosrae, Federated States of Micronesia, who exhibit a high prevalence of obesity and other metabolic disorders. We hypothesized that genetic drift and possibly natural selection on Kosrae might have increased the frequency of previously rare genetic variants with relatively large effects, making these alleles readily detectable in genome-wide association analysis. However, mapping in large, inbred cohorts introduces analytic challenges, as extensive relatedness between subjects violates the assumptions of independence upon which traditional association test statistics are based. We performed genome-wide association analysis for 15 quantitative traits in 2,906 members of the Kosrae population, using novel approaches to manage the extreme relatedness in the sample. As positive controls, we observe association to known loci for plasma cholesterol, triglycerides, and C-reactive protein and to a compelling candidate loci for thyroid stimulating hormone and fasting plasma glucose. We show that our study is well powered to detect common alleles explaining ≥5% phenotypic variance. However, no such large effects were observed with genome-wide significance, arguing that even in such a severely inbred population, common alleles typically have modest effects. Finally, we show that a majority of common variants discovered in Caucasians have indistinguishable effect sizes on Kosrae, despite the major differences in population genetics and environment
Adherence to inhaled therapy and its impact on chronic obstructive pulmonary disease (COPD)
Neural correlates of the appraisal of attachment scenes in healthy controls and social cognition—An fMRI study
The human attachment system is activated in situations of danger such as potential separation, threats of loss of a significant other and potential insecurity on the availability of the attachment figure. To date, however, a precise characterization of the neural correlates of the attachment system in healthy individuals is lacking. This functional magnetic resonance imaging (fMRI) study aims at characterizing the distinctive neural substrates activated by the exposure to attachment vs. non-attachment scenes. Healthy participants (N = 25) were presented scenes from the Adult Attachment Projective Picture System (AAP), a validated set of standardized attachment-related pictures extended by a control picture stimulus set consisting of scenes without attachment-related content. When compared to the control neutral pictures, attachment scenes activated the inferior parietal lobes (IPLs), the middle temporal gyrus (MTG), and the anterior medial prefrontal cortex (mPFC). These areas are associated with reasoning about mental representations, semantic memory of social knowledge, and social cognition. This neural activation pattern confirms the distinctive quality of this stimulus set, and suggests its use as a potential neuroimaging probe to assess social cognition/mentalizing related to attachment in healthy and clinical populations
A Short Functional Neuroimaging Assay Using Attachment Scenes to Recruit Neural Correlates of Social Cognition—A Replication Study
Attachment theory provides a conceptual framework to understand the impact of early child–caregiver experiences, such as loss or separation, on adult functioning and psychopathology. In the current study, scenes from the Adult Attachment Projective Picture System (AAP), a validated, commonly used standardized diagnostic instrument to assess adult attachment representations, were used to develop a short fMRI assay eliciting the neural correlates of encoding of potentially hurtful and threatening social situations such as social losses, rejections or loneliness. Data from healthy participants (N = 19) showed activations in brain areas associated with social cognition and semantic knowledge during exposure to attachment-related scenes compared to control scenes. Extensive activation of the temporal poles was observed, suggesting the use of semantic knowledge for generating social concepts and scripts. This knowledge may underlie our ability to explain and predict social interactions, a specific aspect of theory of mind or mentalization. In this replication study, we verified the effectiveness of a modified fMRI assay to assess the external validity of a previously used imaging paradigm to investigate the processing of emotionally negatively valenced and painful social interactions. Our data confirm the recruitment of brain areas associated with social cognition with our very short neuroimaging assay
A Short Functional Neuroimaging Assay Using Attachment Scenes to Recruit Neural Correlates of Social Cognition—A Replication Study
Attachment theory provides a conceptual framework to understand the impact of early child–caregiver experiences, such as loss or separation, on adult functioning and psychopathology. In the current study, scenes from the Adult Attachment Projective Picture System (AAP), a validated, commonly used standardized diagnostic instrument to assess adult attachment representations, were used to develop a short fMRI assay eliciting the neural correlates of encoding of potentially hurtful and threatening social situations such as social losses, rejections or loneliness. Data from healthy participants (N = 19) showed activations in brain areas associated with social cognition and semantic knowledge during exposure to attachment-related scenes compared to control scenes. Extensive activation of the temporal poles was observed, suggesting the use of semantic knowledge for generating social concepts and scripts. This knowledge may underlie our ability to explain and predict social interactions, a specific aspect of theory of mind or mentalization. In this replication study, we verified the effectiveness of a modified fMRI assay to assess the external validity of a previously used imaging paradigm to investigate the processing of emotionally negatively valenced and painful social interactions. Our data confirm the recruitment of brain areas associated with social cognition with our very short neuroimaging assay
A Short Functional Neuroimaging Assay Using Attachment Scenes to Recruit Neural Correlates of Social Cognition—A Replication Study
Attachment theory provides a conceptual framework to understand the impact of early child–caregiver experiences, such as loss or separation, on adult functioning and psychopathology. In the current study, scenes from the Adult Attachment Projective Picture System (AAP), a validated, commonly used standardized diagnostic instrument to assess adult attachment representations, were used to develop a short fMRI assay eliciting the neural correlates of encoding of potentially hurtful and threatening social situations such as social losses, rejections or loneliness. Data from healthy participants (N = 19) showed activations in brain areas associated with social cognition and semantic knowledge during exposure to attachment-related scenes compared to control scenes. Extensive activation of the temporal poles was observed, suggesting the use of semantic knowledge for generating social concepts and scripts. This knowledge may underlie our ability to explain and predict social interactions, a specific aspect of theory of mind or mentalization. In this replication study, we verified the effectiveness of a modified fMRI assay to assess the external validity of a previously used imaging paradigm to investigate the processing of emotionally negatively valenced and painful social interactions. Our data confirm the recruitment of brain areas associated with social cognition with our very short neuroimaging assay.</jats:p
