10 research outputs found

    Dynamics of Model Membranes by NMR

    Get PDF
    Amphiphilic molecules can create various aggregates in water. Concern about exploring such structures has been unabated for several decades due to the wide range of possible applications of lipid aggregates, from food technology to the pharmaceutical industry. The form of self-assembled structures depends on many factors, such as the type of amphiphilic molecule, the concentration, the level of hydration, the temperature, and the pH. Liposomes and micelles are the most widely known types of closed structures. Liposomes are more often used in the fields of medicine and pharmacy because they consist of nontoxic compounds and their composition and size can be controlled. Nuclear magnetic resonance (NMR) is one of the methods, which is most commonly used to study liposome properties. It can be used to observe changes in the structure, dynamics, and phase transition of lipid membranes. The membrane properties are changed under the influence of external factors, such as temperature, pH, and the presence of ions or drugs. The chapter aims to introduce and discuss the possibilities of the most useful NMR methods, 31P and 1H, to study the liposome properties. It also aims to show how various changes in the structure or dynamics of lipid molecules are visible in the NMR spectra

    Application of Nuclear Magnetic Resonance Spectroscopy (NMR) to Study the Properties of Liposomes

    Get PDF
    The liposomes are well‐known lipid aggregates. The lipid composition and size of the liposomes can be controlled. The method of preparation, lipid composition, temperature, and pH have an influence on the liposome size and bilayer structure. The physicochemical properties of liposomes allow them to various applications. Nuclear magnetic resonance (NMR) is one of the methods used to study liposome properties. The abilities of the method are the high sensitivity and high resolution. Moreover, it provides information about dynamics and structure of molecules. 1H and 31P NMR are most convenient methods to study liposomes, because liposomes are typically formed from phospholipids. Additionally, two‐dimensional NMR spectroscopy reveals information about the nature of intermolecular and intramolecular interactions (scalar and dipole‐dipole interactions) that makes easier to interpret the structure of molecules. The chapter aims to introduce the NMR phenomenon, interactions between spins in magnetic field, dynamics of molecules and physical parameters of NMR spectra, and the necessary information for analyzing and interpreting high‐resolution NMR spectra. It also aims to show how various changes in the bilayer structure or dynamics of lipid molecules are visible in the NMR spectra

    Interactions of sialic acid with phosphatidylcholine liposomes studied by 2D NMR spectroscopy

    No full text
    Biological membranes are complex systems which have attracted scientific interest for a long time and for various reasons. The sialic acid-liposome interactions at the molecular level depend on their hydro-lipophilic characteristics. The aim of the present study was to investigate the changes of conformation of the phospholipid (1,2-Diacyl-sn-glycero-3-phosphocholine) and sialic acid (2,8-(N-acetylneuraminic acid)) molecules and the type of interactions induced by the sialic acid molecules on membrane-like systems (liposomes) by 2D NMR (TOCSY, HETCOR, ROESY). The nature of the interaction of sialic acid with the model membrane depends on the structure of the phospholipid headgroups and the hydration of membrane. In ROESY spectra was observed the absence of dipole-dipole couplings within the choline head, between headgroups and glycerol, and between glycerol and fatty acid chains. It indicates an increase of the membrane dynamics in the presence of sialic acid. Moreover, the conformation of sialic acid molecule is changed in the presence of liposomes, which depends on stereochemistry of the chemical groups of the carbon atoms C7 and C8, and oxygen O8. The observed differences between the ROESY spectra of free and liposome bound sialic acid may be a consequence of a changed orientation of the pyranose ring from trans to gauche in the presence of liposomes. The sialic acid penetrate into the phospholipid bilayer to a sufficient depth to allow the dipole interaction. The present result that the correlation signal was found only between the methyl protons from the acetyl group of sialic acid and the methylene tail of phospholipid molecule in the ROESY spectrum indicates that the opposite end of the sialic acid molecule stays in the aqueous phase without interacting with membrane molecules

    Mechanism and Antibacterial Activity of Gold Nanoparticles (AuNPs) Functionalized with Natural Compounds from Plants

    No full text
    Recently, the biosynthesis of gold nanoparticles (AuNPs) has been widely studied and described. In the age of bacterial drug resistance, an intensive search for new agents with antibacterial properties or a new form of antibiotics with effective action is necessary. As a result, the antibacterial activity of AuNPs functionalized with natural compounds is being investigated more frequently. AuNPs biosynthesized with plant extract or functionalized with bioactive compounds isolated from plants could be particularly useful for pharmaceutical applications. The biosynthesized AuNPs are stabilized by an envelope, which may consist of flavonoids, phenolic acids, lipids and proteins as well as carbohydrates and vitamins. The composition of the natural coating affects the size, shape and stability of the AuNPs and is also responsible for interactions with the bacterial cell wall. Recently, several mechanisms of AuNP interactions with bacterial cells have been identified. Nevertheless, they are not yet well understood, due to the large diversity of plants and biosynthesized AuNPs. Understanding the antibacterial mechanisms allows for the creation of pharmaceutical formulations in the most useful form. Utilizing AuNPs functionalized with plant compounds as antibacterial agents is still a new concept. However, the unique physicochemical and biological properties of AuNPs emphasises their potential for a broad range of applications in the future

    Application of 1H and 31P NMR to topological description of a model of biological membrane fusion Topological description of a model of biological membrane fusion

    No full text
    The process of biological membrane fusion can be analysed by topological methods. Mathematical analysis of the fusion process of vesicles indicated two significant facts: the formation of an inner, transient structure (hexagonal phase - HII) and a translocation of some lipids within the membrane. This shift had a vector character and only occurred from the outer to the inner layer. Model membrane composed of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS) was studied. 31P- and 1H-NMR methods were used to describe the process of fusion. 31P-NMR spectra of multilamellar vesicles (MLV) were taken at various temperatures and concentrations of Ca2+ ions (natural fusiogenic agent). A 31P-NMR spectrum with the characteristic shape of the HII phase was obtained for the molar Ca2+/PS ratio of 2.0. During the study, 1H-NMR and 31P-NMR spectra for small unilamellar vesicle (SUV), which were dependent on time (concentration of Pr3+ ions was constant), were also recorded. The presence of the paramagnetic Pr3+ ions permits observation of separate signals from the hydrophilic part of the inner and outer lipid bilayers. The obtained results suggest that in the process of fusion translocation of phospholipid molecules takes place from the outer to the inner layer of the vesicle and size of the vesicles increase. The NMR study has showed that the intermediate state of the fusion process caused by Ca2+ ions is the HII phase. The experimental results obtained are in agreement with the topological model as well

    Translocation of polysialic acid across model membranes: Kinetic analysis and dynamic.

    No full text
    Transmembrane translocation of polyion homopolymers takes place in the case of polyanionic polysialic acid (polySia), polyanionic polynucleotides and polycationic polypeptides. The purpose of this work was to determine the role of membrane electrical parameters on the kinetics of polyion translocation, the influence of polysialic acid on ion adsorption on positively charged membrane surface and the dynamics of the phospholipid hydrocarbon chains and choline group by using 1H-NMR. The analysis of polyion translocation was performed by using the electrical equivalent circuit of the membrane for the initial membrane potential equal to zero. The changes in polysialic acid flux was up to 75% after 1 ms in comparison with the zero-time flux. Both a decrease of membrane conductance and an increase of polyion chain length resulted in the diminution of this effect. An increase of praseodymium ions adsorption to positively charged liposomes and an increase of the rate of segmental movement of the -CH2 and -CH3 groups, and the choline headgrup of lipid molecules, was observed in the presence of polySia. The results show that the direction of the vectorial polyion translocation depends both on the membrane electrical properties and the degree of polymerization of the polymer, and that polysialic acid can modulate the degree of ion adsorption and the dynamics of membrane lipids

    Eco-Friendly and Temperature Dependent Biosynthesis of Gold Nanoparticles Using the Bacterium <i>Pseudomonas aeruginosa</i>: Characterization and Antibacterial Activity

    Full text link
    Abstract. In this paper we report the biological synthesis of gold nanoparticles (GNPs) by the reduction of gold ions using a suspension and supernatant of P. aeruginosa. The biosynthesis method was straightforward and yielded good results without using toxic chemicals. The size distribution of the gold nanoparticles synthesized by P. aeruginosa at higher temperatures was larger than that synthesized at lower temperatures. The GNPs morphology was isotropic at various temperatures. With an increase in the temperature, the stability of the GNPs decreased. The absorption and fluorescence spectra accorded well with the size distribution of the particles, with the nanoparticle size increasing as the absorption and fluorescence increased too. The optical properties of the GNPs observed in the study accorded well with the scanning electron microscopy (SEM) observations. The visible photoluminescence (PL) around 435 nm indicated the possible use of the obtained colloids, which consisted of GNPs and capping biomaterial, in therapeutic applications. Moreover, the synthesized GNPs showed good antibacterial activity toward E. coli indicating their potential in biological applications.</jats:p
    corecore