21 research outputs found
Natriuretic Peptide Levels and Stages of Left Ventricular Dysfunction in Heart Failure with Preserved Ejection Fraction
In heart failure with preserved ejection fraction (HFpEF), natriuretic peptide (NP) levels are frequently lower. In several trials, the outcome differed between patients with low and high NP levels. This suggests that NP could be used to identify distinct stages of left ventricular (LV) remodeling and myocardial tissue composition. This study investigated cardiac remodeling/dysfunction and myocardial tissue characteristics assessed by echocardiography and cardiac magnetic resonance (CMR) in HFpEF patients in relation to NP levels. Clinical and echocardiographic data of 152 HFpEF patients were derived from outpatient visits. A total of 71 HFpEF patients underwent CMR-derived T1-mapping. Multivariable regression analyses were performed to examine the association of NT-proBNP categories ( median) and NT-proBNP as continuous variable with echocardiography and CMR-derived T1-mapping. Mean age was 71 ± 9, 93% of patients were women and median NT-proBNP was 195 pg/mL, with 35% of patients below the diagnostic cut-off value (<125 pg/mL). Patients with high NT-proBNP had comparable LV systolic function and LV relaxation but significantly worse LV stiffness and left atrial function compared with patients with low NT-proBNP. Higher NT-proBNP was significantly associated with higher LV stiffness and extracellular volume fraction (ECV) (β = 1.82, 95% CI: 0.19;3.44, p = 0.029). Higher NT-proBNP levels identify HFpEF patients with worse LV stiffness because of more severe myocardial extracellular matrix remodeling, representing an advanced stage of HFpEF
Grading of carotid artery stenosis with multidetector-row CT angiography: visual estimation or caliper measurements?
To assess the optimal method for grading carotid artery stenosis with computed tomographic angiography (CTA), we compared visual estimation to caliper measurements, and determined inter-observer variability and agreement relative to digital subtraction angiography (DSA). We included 46 patients with symptomatic carotid stenosis for whom CTA and DSA of 55 carotids was available. Stenosis quantification by CTA using visual estimation (CTAVE) (method 1) was compared with caliper measurements using subjectively optimized wide window settings (method 2) or predefined contrast-dependent narrow window settings (method 3). Measurements were independently performed by two radiologists and two residents. To determine accuracy and inter-observer variability, we calculated linear weighted kappa, performed a Bland-Altman analysis and calculated mean difference (bias) and standard deviation of differences (SDD). For inter-observer variability, kappa analysis was “very good” (0.85) for expert observers using CTAVE compared with “good” (0.61) for experts using DSA. Compared with DSA, method 1 led to overestimation (bias 5.8–8.0%, SDD 10.6–14.4), method 3 led to underestimation (bias −6.3 to −3.0%, SDD 13.0–18.1). Measurement variability between DSA and visual estimation on CTA (SDD 11.5) is close to the inter-observer variability of repeated measurements on DSA that we found in this study (SDD 11.6). For CTA of carotids, stenosis grading based on visual estimation provides better agreement to grading by DSA compared with stenosis grading based on caliper measurements
Segmentation of arteries and veins on 4D CT perfusion scans for constructing arteriograms and venograms
Natriuretic Peptide Levels and Stages of Left Ventricular Dysfunction in Heart Failure with Preserved Ejection Fraction
In heart failure with preserved ejection fraction (HFpEF), natriuretic peptide (NP) levels are frequently lower. In several trials, the outcome differed between patients with low and high NP levels. This suggests that NP could be used to identify distinct stages of left ventricular (LV) remodeling and myocardial tissue composition. This study investigated cardiac remodeling/dysfunction and myocardial tissue characteristics assessed by echocardiography and cardiac magnetic resonance (CMR) in HFpEF patients in relation to NP levels. Clinical and echocardiographic data of 152 HFpEF patients were derived from outpatient visits. A total of 71 HFpEF patients underwent CMR-derived T1-mapping. Multivariable regression analyses were performed to examine the association of NT-proBNP categories (</> median) and NT-proBNP as continuous variable with echocardiography and CMR-derived T1-mapping. Mean age was 71 ± 9, 93% of patients were women and median NT-proBNP was 195 pg/mL, with 35% of patients below the diagnostic cut-off value (<125 pg/mL). Patients with high NT-proBNP had comparable LV systolic function and LV relaxation but significantly worse LV stiffness and left atrial function compared with patients with low NT-proBNP. Higher NT-proBNP was significantly associated with higher LV stiffness and extracellular volume fraction (ECV) (β = 1.82, 95% CI: 0.19;3.44, p = 0.029). Higher NT-proBNP levels identify HFpEF patients with worse LV stiffness because of more severe myocardial extracellular matrix remodeling, representing an advanced stage of HFpEF
Natriuretic Peptide Levels and Stages of Left Ventricular Dysfunction in Heart Failure with Preserved Ejection Fraction
In heart failure with preserved ejection fraction (HFpEF), natriuretic peptide (NP) levels are frequently lower. In several trials, the outcome differed between patients with low and high NP levels. This suggests that NP could be used to identify distinct stages of left ventricular (LV) remodeling and myocardial tissue composition. This study investigated cardiac remodeling/dysfunction and myocardial tissue characteristics assessed by echocardiography and cardiac magnetic resonance (CMR) in HFpEF patients in relation to NP levels. Clinical and echocardiographic data of 152 HFpEF patients were derived from outpatient visits. A total of 71 HFpEF patients underwent CMR-derived T1-mapping. Multivariable regression analyses were performed to examine the association of NT-proBNP categories (</> median) and NT-proBNP as continuous variable with echocardiography and CMR-derived T1-mapping. Mean age was 71 ± 9, 93% of patients were women and median NT-proBNP was 195 pg/mL, with 35% of patients below the diagnostic cut-off value (<125 pg/mL). Patients with high NT-proBNP had comparable LV systolic function and LV relaxation but significantly worse LV stiffness and left atrial function compared with patients with low NT-proBNP. Higher NT-proBNP was significantly associated with higher LV stiffness and extracellular volume fraction (ECV) (β = 1.82, 95% CI: 0.19;3.44, p = 0.029). Higher NT-proBNP levels identify HFpEF patients with worse LV stiffness because of more severe myocardial extracellular matrix remodeling, representing an advanced stage of HFpEF.</jats:p
CT measurement of changes in cerebral perfusion in patients with asymptomatic carotid artery stenosis undergoing carotid stenting prior to cardiac surgery: "proof of principle"
Stratified Treatment of Heart Failure with preserved Ejection Fraction: rationale and design of the STADIA-HFpEF trial
Aims: High myocardial stiffness in heart failure with preserved ejection fraction (HFpEF) is attributed to comorbidity-induced structural and functional remodelling through inflammation and oxidative stress affecting coronary microvascular endothelial cells and cardiomyocytes, which augments interstitial fibrosis and cardiomyocyte stiffness. In murine and human HFpEF myocardium, sodium glucose co-transporter 2 (SGLT2) inhibition ameliorates cardiac microvascular endothelial cell and cardiomyocyte oxidative stress, while enhancing myocardial protein kinase G activity and lowering titin-based cardiomyocyte stiffness. Failure of previous HFpEF outcome trials refocuses attention to improving pathophysiological insight and trial design with better phenotyping of patients and matching of therapeutic targets to prevailing pathogenetic mechanisms. SGLT2 inhibition could represent a viable therapeutic option especially in HFpEF patients in whom high diastolic left ventricular (LV) stiffness is predominantly caused by elevated cardiomyocyte stiffness and associated endothelial dysfunction, whereas HFpEF patients with extensive myocardial fibrosis might be less responsive. This study aims to investigate a stratified treatment approach, using dapagliflozin in heart failure patients with preserved ejection fraction without evidence of significant myocardial fibrosis. Methods and results: The Stratified Treatment to Ameliorate DIAstolic left ventricular stiffness in early Heart Failure with preserved Ejection Fraction (STADIA-HFpEF) is a Phase II, randomized, 2 × 2 crossover trial, evaluating the efficacy of 13 weeks of treatment with dapagliflozin 10 mg od in 26 patients with HFpEF, with normal cardiac magnetic resonance imaging-derived extracellular volume. The co-primary endpoint is echocardiographically derived change in E/e'/LV end-diastolic volume index and change in mean LV e'. Conclusions: The STADIA-HFpEF trial will be the first study to evaluate the direct effects of dapagliflozin on amelioration of LV stiffness, using histological phenotyping to discern early HFpEF
