47 research outputs found
Party systems in Eastern Europe - what determines the chances of newcomers?
"In February 2000 the EU opened accession negotiations with the last of the countries that were to become members in 2004 and 2007 (EU-10). Ten years after the more or less peaceful revolutions these countries had made remarkable progress in the transformation processes towards democracy and market economy. The economies had stabilized and started to grow. In the political sphere party systems as a 'set of parties that interact in patterned ways' had developed. Despite of this apparent consolidation some of the parliamentary elections in the EU-10 in the periods 2000-2003 and 2004-2007 saw landslide victories of complete newcomers. In other cases, however, new parties remained marginal or failed to pass the representation threshold. The following paper aims at investigating why new parties were so successful in some countries/ elections, while failing in others. The background section provides an overview about the existing literature on emergence and success of new parties - in 'old' and 'new' democracies. Independent variables not yet addressed in research are identified. The second part describes frameworks for analysis and develops hypotheses. Operationalization and measurement of the variables is then followed by analysis and discussion of the results." (author's abstract
Activator-protein-1 binding potentiates the hypoxia-induciblefactor-1-mediated hypoxia-induced transcriptional activation of vascular-endothelial growth factor expression in C6 glioma cells
Lineage specific evolution of the VNTR composite retrotransposon central domain and its role in retrotransposition of gibbon LAVA elements
BACKGROUND: VNTR (Variable Number of Tandem Repeats) composite retrotransposons - SVA (SINE-R-VNTR-Alu), LAVA (LINE-1-Alu-VNTR-Alu), PVA (PTGR2-VNTR-Alu) and FVA (FRAM-VNTR-Alu) - are specific to hominoid primates. Their assembly, the evolution of their 5’ and 3’ domains, and the functional significance of the shared 5’ Alu-like region are well understood. The central VNTR domain, by contrast, has long been assumed to represent a more or less random collection of 30-50 bp GC-rich repeats. It is only recently that it attracted attention in the context of regulation of SVA expression. RESULTS: Here we provide evidence that the organization of the VNTR is non-random, with conserved repeat unit (RU) arrays at both the 5’ and 3’ ends of the VNTRs of human, chimpanzee and orangutan SVA and gibbon LAVA. The younger SVA subfamilies harbour highly organized internal RU arrays. The composition of these arrays is specific to the human/chimpanzee and orangutan lineages, respectively. Tracing the development of the VNTR through evolution we show for the first time how tandem repeats evolve within the constraints set by a functional, non-autonomous non-LTR retrotransposon in two different families - LAVA and SVA - in different hominoid lineages. Our analysis revealed that a microhomology-driven mechanism mediates expansion/contraction of the VNTR domain at the DNA level. Elements of all four VNTR composite families have been shown to be mobilized by the autonomous LINE1 retrotransposon in trans. In case of SVA, key determinants of mobilization are found in the 5’ hexameric repeat/Alu-like region. We now demonstrate that in LAVA, by contrast, the VNTR domain determines mobilization efficiency in the context of domain swaps between active and inactive elements. CONCLUSIONS: The central domain of VNTR composites evolves in a lineage-specific manner which gives rise to distinct structures in gibbon LAVA, orangutan SVA, and human/chimpanzee SVA. The differences observed between the families and lineages are likely to have an influence on the expression and mobilization of the elements. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1543-z) contains supplementary material, which is available to authorized users
The non-autonomous retrotransposon SVA is trans-mobilized by the human LINE-1 protein machinery
SINE-VNTR-Alu (SVA) elements are non-autonomous, hominid-specific non-LTR retrotransposons and distinguished by their organization as composite mobile elements. They represent the evolutionarily youngest, currently active family of human non-LTR retrotransposons, and sporadically generate disease-causing insertions. Since preexisting, genomic SVA sequences are characterized by structural hallmarks of Long Interspersed Elements 1 (LINE-1, L1)-mediated retrotransposition, it has been hypothesized for several years that SVA elements are mobilized by the L1 protein machinery in trans. To test this hypothesis, we developed an SVA retrotransposition reporter assay in cell culture using three different human-specific SVA reporter elements. We demonstrate that SVA elements are mobilized in HeLa cells only in the presence of both L1-encoded proteins, ORF1p and ORF2p. SVA trans-mobilization rates exceeded pseudogene formation frequencies by 12- to 300-fold in HeLa-HA cells, indicating that SVA elements represent a preferred substrate for L1 proteins. Acquisition of an AluSp element increased the trans-mobilization frequency of the SVA reporter element by ~25-fold. Deletion of (CCCTCT)n repeats and Alu-like region of a canonical SVA reporter element caused significant attenuation of the SVA trans-mobilization rate. SVA de novo insertions were predominantly full-length, occurred preferentially in G+C-rich regions, and displayed all features of L1-mediated retrotransposition which are also observed in preexisting genomic SVA insertions
LINE-1 ORF1p does not determine substrate preference for human/orangutan SVA and gibbon LAVA
Abstract
Background
Non-autonomous VNTR (Variable Number of Tandem Repeats) composite retrotransposons – SVA (SINE-R-VNTR-Alu) and LAVA (L1-Alu-VNTR-Alu) – are specific to hominoid primates. SVA expanded in great apes, LAVA in gibbon. Both SVA and LAVA have been shown to be mobilized by the autonomous LINE-1 (L1)-encoded protein machinery in a cell-based assay in trans. The efficiency of human SVA retrotransposition in vitro has, however, been considerably lower than would be expected based on recent pedigree-based in vivo estimates. The VNTR composite elements across hominoids – gibbon LAVA, orangutan SVA_A descendants and hominine SVA_D descendants – display characteristic structures of the 5′ Alu-like domain and the VNTR. Different partner L1 subfamilies are currently active in each of the lineages. The possibility that the lineage-specific types of VNTR composites evolved in response to evolutionary changes in their autonomous partners, particularly in the nucleic acid binding L1 ORF1-encoded protein, has not been addressed.
Results
Here I report the identification and functional characterization of a highly active human SVA element using an improved mneo retrotransposition reporter cassette. The modified cassette (mneoM) minimizes splicing between the VNTR of human SVAs and the neomycin phosphotransferase stop codon. SVA deletion analysis provides evidence that key elements determining its mobilization efficiency reside in the VNTR and 5′ hexameric repeats. Simultaneous removal of the 5′ hexameric repeats and part of the VNTR has an additive negative effect on mobilization rates. Taking advantage of the modified reporter cassette that facilitates robust cross-species comparison of SVA/LAVA retrotransposition, I show that the ORF1-encoded proteins of the L1 subfamilies currently active in gibbon, orangutan and human do not display substrate preference for gibbon LAVA versus orangutan SVA versus human SVA. Finally, I demonstrate that an orangutan-derived ORF1p supports only limited retrotransposition of SVA/LAVA in trans, despite being fully functional in L1 mobilization in cis.
Conclusions
Overall, the analysis confirms SVA as a highly active human retrotransposon and preferred substrate of the L1-encoded protein machinery. Based on the results obtained in human cells coevolution of L1 ORF1p and VNTR composites does not appear very likely. The changes in orangutan L1 ORF1p that markedly reduce its mobilization capacity in trans might explain the different SVA insertion rates in the orangutan and hominine lineages, respectively.
</jats:sec
SVA Retrotransposons and a Low Copy Repeat in Humans and Great Apes: A Mobile Connection
Abstract
Segmental duplications (SDs) constitute a considerable fraction of primate genomes. They contribute to genetic variation and provide raw material for evolution. Groups of SDs are characterized by the presence of shared core duplicons. One of these core duplicons, low copy repeat (lcr)16a, has been shown to be particularly active in the propagation of interspersed SDs in primates. The underlying mechanisms are, however, only partially understood. Alu short interspersed elements (SINEs) are frequently found at breakpoints and have been implicated in the expansion of SDs.
Detailed analysis of lcr16a-containing SDs shows that the hominid-specific SVA (SINE-R-VNTR-Alu) retrotransposon is an integral component of the core duplicon in Asian and African great apes. In orang-utan, it provides breakpoints and contributes to both interchromosomal and intrachromosomal lcr16a mobility by inter-element recombination. Furthermore, the data suggest that in hominines (human, chimpanzee, gorilla) SVA recombination-mediated integration of a circular intermediate is the founding event of a lineage-specific lcr16a expansion. One of the hominine lcr16a copies displays large flanking direct repeats, a structural feature shared by other SDs in the human genome.
Taken together, the results obtained extend the range of SVAs’ contribution to genome evolution from RNA-mediated transduction to DNA-based recombination. In addition, they provide further support for a role of circular intermediates in SD mobilization.</jats:p
Phylogenomic analysis reveals splicing as a mechanism of parallel evolution of non-canonical SVAs in hominine primates
Abstract SVA (SINE-R-VNTR-Alu) elements are non-autonomous non-LTR (Long Terminal Repeat) retrotransposons. They are found in all hominoid primates but did not amplify to appreciable numbers in gibbons. Recently, phylogenetic networks of hominid (orangutan, gorilla, chimpanzee, human) SVA elements based on comparison of overall sequence identity have been reported. Here I present a detailed phylogeny of SVA_D elements in gorilla, chimpanzee and humans based on sorting of co-segregating substitutions. Complementary comparative genomics analysis revealed that the majority (1763 out of 1826–97%) of SVA_D elements in gorilla represent species-specific insertions – indicating very low activity of the subfamily before the gorilla/chimpanzee-human split. The origin of the human-specific subfamily SVA_F could be traced back to a source element in the hominine common ancestor. The major expanding lineage-specific subfamilies were found to differ between chimpanzee and humans. Precursors of the dominant chimpanzee SVA_D subfamily are present in humans; however, they did not expand to appreciable levels. The analysis also uncovered that one of the chimpanzee-specific subfamilies was formed by splicing of the STK40 first exon to the SVA Alu-like region. Many of the 94 subfamily members contain additional 5′ transductions – among them exons of 8 different other genes. Striking similarities to the MAST2-containing human SVA_F1 suggest parallel evolution of non-canonical SVAs in chimpanzees and humans
LINE-1 ORF1p does not determine substrate preference for human/orangutan SVA and gibbon LAVA
Abstract
Background
Non-autonomous VNTR (Variable Number of Tandem Repeats) composite retrotransposons – SVA (SINE-R-VNTR-
Alu
) and LAVA (L1-
Alu
-VNTR-
Alu
) – are specific to hominoid primates. SVA expanded in great apes, LAVA in gibbon. Both SVA and LAVA have been shown to be mobilized by the autonomous LINE-1 (L1)-encoded protein machinery in a cell-based assay in
trans
. The efficiency of human SVA retrotransposition in vitro has, however, been considerably lower than would be expected based on recent pedigree-based in vivo estimates. The VNTR composite elements across hominoids – gibbon LAVA, orangutan SVA_A descendants and hominine SVA_D descendants – display characteristic structures of the 5′
Alu
-like domain and the VNTR. Different partner L1 subfamilies are currently active in each of the lineages. The possibility that the lineage-specific types of VNTR composites evolved in response to evolutionary changes in their autonomous partners, particularly in the nucleic acid binding L1 ORF1-encoded protein, has not been addressed.
Results
Here I report the identification and functional characterization of a highly active human SVA element using an improved
mneo
retrotransposition reporter cassette. The modified cassette (
mneoM
) minimizes splicing between the VNTR of human SVAs and the neomycin phosphotransferase stop codon. SVA deletion analysis provides evidence that key elements determining its mobilization efficiency reside in the VNTR and 5′ hexameric repeats. Simultaneous removal of the 5′ hexameric repeats and part of the VNTR has an additive negative effect on mobilization rates. Taking advantage of the modified reporter cassette that facilitates robust cross-species comparison of SVA/LAVA retrotransposition, I show that the ORF1-encoded proteins of the L1 subfamilies currently active in gibbon, orangutan and human do not display substrate preference for gibbon LAVA versus orangutan SVA versus human SVA. Finally, I demonstrate that an orangutan-derived ORF1p supports only limited retrotransposition of SVA/LAVA in
trans
, despite being fully functional in L1 mobilization in
cis
.
Conclusions
Overall, the analysis confirms SVA as a highly active human retrotransposon and preferred substrate of the L1-encoded protein machinery. Based on the results obtained in human cells coevolution of L1 ORF1p and VNTR composites does not appear very likely. The changes in orangutan L1 ORF1p that markedly reduce its mobilization capacity in
trans
might explain the different SVA insertion rates in the orangutan and hominine lineages, respectively
