6 research outputs found
Dealing with prognostic signature instability : a strategy illustrated for cardiovascular events in patients with end-stage renal disease
Background
Identification of prognostic gene expression markers from clinical cohorts might help to better understand disease etiology. A set of potentially important markers can be automatically selected when linking gene expression covariates to a clinical endpoint by multivariable regression models and regularized parameter estimation. However, this is hampered by instability due to selection from many measurements. Stability can be assessed by resampling techniques, which might guide modeling decisions, such as choice of the model class or the specific endpoint definition.
Methods
We specifically propose a strategy for judging the impact of different endpoint definitions, endpoint updates, different approaches for marker selection, and exclusion of outliers. This strategy is illustrated for a study with end-stage renal disease patients, who experience a yearly mortality of more than 20 %, with almost 50 % sudden cardiac death or myocardial infarction. The underlying etiology is poorly understood, and we specifically point out how our strategy can help to identify novel prognostic markers and targets for therapeutic interventions.
Results
For markers such as the potentially prognostic platelet glycoprotein IIb, the endpoint definition, in combination with the signature building approach is seen to have the largest impact. Removal of outliers, as identified by the proposed strategy, is also seen to considerably improve stability.
Conclusions
As the proposed strategy allowed us to precisely quantify the impact of modeling choices on the stability of marker identification, we suggest routine use also in other applications to prevent analysis-specific results, which are unstable, i.e. not reproducible
Dealing with prognostic signature instability: a strategy illustrated for cardiovascular events in patients with end-stage renal disease
Dealing with prognostic signature instability : a strategy illustrated for cardiovascular events in patients with end-stage renal disease
Background
Identification of prognostic gene expression markers from clinical cohorts might help to better understand disease etiology. A set of potentially important markers can be automatically selected when linking gene expression covariates to a clinical endpoint by multivariable regression models and regularized parameter estimation. However, this is hampered by instability due to selection from many measurements. Stability can be assessed by resampling techniques, which might guide modeling decisions, such as choice of the model class or the specific endpoint definition.
Methods
We specifically propose a strategy for judging the impact of different endpoint definitions, endpoint updates, different approaches for marker selection, and exclusion of outliers. This strategy is illustrated for a study with end-stage renal disease patients, who experience a yearly mortality of more than 20 %, with almost 50 % sudden cardiac death or myocardial infarction. The underlying etiology is poorly understood, and we specifically point out how our strategy can help to identify novel prognostic markers and targets for therapeutic interventions.
Results
For markers such as the potentially prognostic platelet glycoprotein IIb, the endpoint definition, in combination with the signature building approach is seen to have the largest impact. Removal of outliers, as identified by the proposed strategy, is also seen to considerably improve stability.
Conclusions
As the proposed strategy allowed us to precisely quantify the impact of modeling choices on the stability of marker identification, we suggest routine use also in other applications to prevent analysis-specific results, which are unstable, i.e. not reproducible
Dealing with prognostic signature instability : a strategy illustrated for cardiovascular events in patients with end-stage renal disease
Background
Identification of prognostic gene expression markers from clinical cohorts might help to better understand disease etiology. A set of potentially important markers can be automatically selected when linking gene expression covariates to a clinical endpoint by multivariable regression models and regularized parameter estimation. However, this is hampered by instability due to selection from many measurements. Stability can be assessed by resampling techniques, which might guide modeling decisions, such as choice of the model class or the specific endpoint definition.
Methods
We specifically propose a strategy for judging the impact of different endpoint definitions, endpoint updates, different approaches for marker selection, and exclusion of outliers. This strategy is illustrated for a study with end-stage renal disease patients, who experience a yearly mortality of more than 20 %, with almost 50 % sudden cardiac death or myocardial infarction. The underlying etiology is poorly understood, and we specifically point out how our strategy can help to identify novel prognostic markers and targets for therapeutic interventions.
Results
For markers such as the potentially prognostic platelet glycoprotein IIb, the endpoint definition, in combination with the signature building approach is seen to have the largest impact. Removal of outliers, as identified by the proposed strategy, is also seen to considerably improve stability.
Conclusions
As the proposed strategy allowed us to precisely quantify the impact of modeling choices on the stability of marker identification, we suggest routine use also in other applications to prevent analysis-specific results, which are unstable, i.e. not reproducible
Adult patients with sporadic polycystic kidney disease: the importance of screening for mutations in the PKD1 and PKD2 genes
Empagliflozin in Patients with Chronic Kidney Disease
Background The effects of empagliflozin in patients with chronic kidney disease who are at risk for disease progression are not well understood. The EMPA-KIDNEY trial was designed to assess the effects of treatment with empagliflozin in a broad range of such patients. Methods We enrolled patients with chronic kidney disease who had an estimated glomerular filtration rate (eGFR) of at least 20 but less than 45 ml per minute per 1.73 m(2) of body-surface area, or who had an eGFR of at least 45 but less than 90 ml per minute per 1.73 m(2) with a urinary albumin-to-creatinine ratio (with albumin measured in milligrams and creatinine measured in grams) of at least 200. Patients were randomly assigned to receive empagliflozin (10 mg once daily) or matching placebo. The primary outcome was a composite of progression of kidney disease (defined as end-stage kidney disease, a sustained decrease in eGFR to < 10 ml per minute per 1.73 m(2), a sustained decrease in eGFR of & GE;40% from baseline, or death from renal causes) or death from cardiovascular causes. Results A total of 6609 patients underwent randomization. During a median of 2.0 years of follow-up, progression of kidney disease or death from cardiovascular causes occurred in 432 of 3304 patients (13.1%) in the empagliflozin group and in 558 of 3305 patients (16.9%) in the placebo group (hazard ratio, 0.72; 95% confidence interval [CI], 0.64 to 0.82; P < 0.001). Results were consistent among patients with or without diabetes and across subgroups defined according to eGFR ranges. The rate of hospitalization from any cause was lower in the empagliflozin group than in the placebo group (hazard ratio, 0.86; 95% CI, 0.78 to 0.95; P=0.003), but there were no significant between-group differences with respect to the composite outcome of hospitalization for heart failure or death from cardiovascular causes (which occurred in 4.0% in the empagliflozin group and 4.6% in the placebo group) or death from any cause (in 4.5% and 5.1%, respectively). The rates of serious adverse events were similar in the two groups. Conclusions Among a wide range of patients with chronic kidney disease who were at risk for disease progression, empagliflozin therapy led to a lower risk of progression of kidney disease or death from cardiovascular causes than placebo
