393 research outputs found

    On the role of the inhibitory receptor LAG-3 in acute and chronic LCMV infection

    Get PDF
    Chronic viral infections are often characterized by CD8 T-cell responses with poor cytokine secretion potential and limited expansion of the CD8 T-cell pool, collectively referred to as CD8 T-cell exhaustion. Exhaustion of lymphocytic choriomeningitis virus (LCMV)-specific CD8 T cells was shown to be partially regulated by the inhibitory receptor programmed death 1 (PD-1). Here, we demonstrate that exhausted LCMV-specific CD8 T cells also express the negative regulatory receptor lymphocyte activation gene 3 (LAG-3) which is mainly expressed on cells co-expressing the negative regulatory receptors PD-1 and Tim-3. Expression levels of LAG-3 on anti-viral CD8 T cells remain stable over short-term in vitro stimulations in presence of antigenic peptide. Nevertheless, in vitro and in vivo blockade of LAG-3 did not rescue cytokine production by virus-specific CD8 T cells and did not alter the virus titer in various organs. Likewise, chronic LCMV infection of LAG-3−/− mice led to a comparable degree of T-cell exhaustion as observed in C57BL/6 controls and to similar virus titers. Further, LAG-3 did not influence T-cell activation or cell division during chronic LCMV infection. These data suggest that even though LAG-3 is continuously up-regulated on LCMV-specific exhausted CD8 T cells, it alone does not significantly contribute to T-cell exhaustio

    Estimating the in vivo killing efficacy of cytotoxic T lymphocytes across different peptide-MHC complex densities

    Get PDF
    Cytotoxic T lymphocytes (CTLs) are important agents in the control of intracellular pathogens, which specifically recognize and kill infected cells. Recently developed experimental methods allow the estimation of the CTL's efficacy in detecting and clearing infected host cells. One method, the in vivo killing assay, utilizes the adoptive transfer of antigen displaying target cells into the bloodstream of mice. Surprisingly, killing efficacies measured by this method are often much higher than estimates obtained by other methods based on, for instance, the dynamics of escape mutations. In this study, we investigated what fraction of this variation can be explained by differences in peptide loads employed in in vivo killing assays. We addressed this question in mice immunized with lymphocytic choriomeningitis virus (LCMV). We conducted in vivo killing assays varying the loads of the immunodominant epitope GP33 on target cells. Using a mathematical model, we determined the efficacy of effector and memory CTL, as well as CTL in chronically infected mice. We found that the killing efficacy is substantially reduced at lower peptide loads. For physiological peptide loads, our analysis predicts more than a factor 10 lower CTL efficacies than at maximum peptide loads. Assuming that the efficacy scales linearly with the frequency of CTL, a clear hierarchy emerges among the groups across all peptide antigen concentrations. The group of mice with chronic LCMV infections shows a consistently higher killing efficacy per CTL than the acutely infected mouse group, which in turn has a consistently larger efficacy than the memory mouse group. We conclude that CTL killing efficacy dependence on surface epitope frequencies can only partially explain the variation in in vivo killing efficacy estimates across experimental methods and viral systems, which vary about four orders of magnitude. In contrast, peptide load differences can explain at most two orders of magnitude

    HIV-Specific Cellular Immune Response Is Inversely Correlated with Disease Progression as Defined by Decline of CD4+ T Cells in Relation to HIV RNA Load

    Get PDF
    The average time between infection with human immunodeficiency virus (HIV) and development of acquired immune deficiency syndrome is ∼8 years. However, progression rates vary widely, depending on several determinants, including HIV-specific immunity, host genetic factors, and virulence of the infecting strain. In untreated HIV-infected patients with different progression rates, we examined HIV-specific T cell responses in combination with host genetic markers, such as chemokine/chemokine-receptor (CCR) polymorphisms and human leukocyte antigen (HLA) genotypes. HIV-specific CD4+ T cell responses and, to a lesser extent, HIVspecific CD8+ T cell responses were inversely correlated with progression rate. Slower progression was not related to polymorphisms in CCR genes, HLA genotype, or GB virus C coinfection. These data suggest that HIV-specific T cell responses are involved in protecting the host from disease progressio

    Failure to Detect Xenotropic Murine Leukemia Virus-Related Virus in Blood of Individuals at High Risk of Blood-Borne Viral Infections

    Get PDF
    A xenotropic murine leukemia virus-related virus (XMRV) has recently been reported in association with prostate cancer and chronic fatigue syndrome, with a prevalence of up to 3.7% in the healthy population. We looked for XMRV in 230 patients with human immunodeficiency virus type 1 or hepatitis C infection. XMRV was undetectable in plasma or peripheral blood mononuclear cells by polymerase chain reaction targeting XMRV gag or env. T cell responses to XMRV Gag were undetectable in peripheral blood mononuclear cells by ex vivo gamma interferon enzyme-linked immunospot assay. In our cohorts, XMRV was not enriched in patients with blood-borne or sexually transmitted infections fromthe United Kingdom and Western Europ

    Immediate Cytotoxicity But Not Degranulation Distinguishes Effector and Memory Subsets of CD8+ T Cells

    Get PDF
    CD8+ T cells play a central role in the resolution and containment of viral infections. A key effector function of CD8+ T cells is their cytolytic activity toward infected cells. Here, we studied the regulation of cytolytic activity in naive, effector, and central versus effector memory CD8+ T cells specific for the same glycoprotein-derived epitope of lymphocytic choriomeningitis virus. Our results show that the kinetics of degranulation, assessed by a novel flow cytometric based assay, were identical in effector and both subsets of memory CD8+ T cells, but absent in naive CD8+ T cells. However, immediate cytolytic activity was most pronounced in effector T cells, low in effector memory T cells, and absent in central memory T cells, correlating with the respective levels of cytolytic effector molecules present in lytic granules. These results indicate that an inherent program of degranulation is a feature of antigen-experienced cells as opposed to naive CD8+ T cells and that the ability of CD8+ T cells to induce target cell apoptosis/death is dependent on granule protein content rather than on the act of degranulation itself. Furthermore, these results provide a potential mechanism by which central memory CD8+ T cell–mediated death of antigen-presenting cells within the lymph node is avoided

    Peroxiredoxin 6 is required for blood vessel integrity in wounded skin

    Get PDF
    Peroxiredoxin 6 (Prdx6) is a cytoprotective enzyme with largely unknown in vivo functions. Here, we use Prdx6 knockout mice to determine its role in UV protection and wound healing. UV-mediated keratinocyte apoptosis is enhanced in Prdx6-deficient mice. Upon skin injury, we observe a severe hemorrhage in the granulation tissue of knockout animals, which correlates with the extent of oxidative stress. At the ultrastructural level endothelial cells appear highly damaged, and their rate of apoptosis is enhanced. Knock-down of Prdx6 in cultured endothelial cells also increases their susceptibility to oxidative stress, thus confirming the sensitivity of this cell type to loss of Prdx6. Wound healing studies in bone marrow chimeric mice demonstrate that Prdx6-deficient inflammatory and endothelial cells contribute to the hemorrhage phenotype. These results provide insight into the cross-talk between hematopoietic and resident cells at the wound site and the role of reactive oxygen species in this interplay

    NK cells negatively regulate CD8 T cells via natural cytotoxicity receptor (NCR) 1 during LCMV infection

    Get PDF
    Besides their function in recognizing cancerous and virally infected cells, natural killer (NK) cells have the potential to shape adaptive immune responses. However, the mechanisms employed by NK cells to negatively regulate virus-specific CD8 T cell responses remain to be fully defined. Using activating receptor natural cytotoxicity receptor (NCR) 1 deficient (NCR1gfp/gfp) mice, we found increased numbers of virus-specific CD8 T cells, leading to enhanced virus control during acute LCMV infection. Furthermore, virus-specific CD8 T cells were more activated in the absence of NCR1, resulting in exacerbated immunopathology, documented by weight loss, and superior virus control early during chronic LCMV infection. Transfer experiments of virus-specific CD8 T cells into NCR1 deficient hosts revealed a direct cross talk between NK and CD8 T cells. Studies on the splenic microarchitecture revealed pronounced disorganization of T cells in infected NCR1gfp/gfp mice, resulting in enhanced immunopathology and disruption of the T cell niche upon chronic LCMV infection. Our data show a novel pathway employed by NK cells to regulate antiviral CD8 T cell responses, namely direct recognition and elimination of activated CD8 T cells via NCR1 early during infection to protect the host from an overshooting T cell response

    IL-10 Suppression of NK/DC Crosstalk Leads to Poor Priming of MCMV-Specific CD4 T Cells and Prolonged MCMV Persistence

    Get PDF
    IL-10 is an anti-inflammatory cytokine that regulates the extent of host immunity to infection by exerting suppressive effects on different cell types. Herpes viruses induce IL-10 to modulate the virus-host balance towards their own benefit, resulting in prolonged virus persistence. To define the cellular and molecular players involved in IL-10 modulation of herpes virus-specific immunity, we studied mouse cytomegalovirus (MCMV) infection. Here we demonstrate that IL-10 specifically curtails the MCMV-specific CD4 T cell response by suppressing the bidirectional crosstalk between NK cells and myeloid dendritic cells (DCs). In absence of IL-10, NK cells licensed DCs to effectively prime MCMV-specific CD4 T cells and we defined the pro-inflammatory cytokines IL-12, IFN-γ and TNF-α as well as NK cell activating receptors NKG2D and NCR-1 to regulate this bidirectional NK/DC interplay. Consequently, markedly enhanced priming of MCMV-specific CD4 T cells in Il10-/-mice led to faster control of lytic viral replication, bu
    corecore