13 research outputs found
Nutzerzentrierung in der öffentlichen Verwaltung: Welche Potenziale bietet Design Thinking?
Die gesetzlich vorgesehene Bereitstellung von Digitalisierungsangeboten stellt öffentliche Verwaltungen vor steigende Herausforderungen. Aufgrund der Heterogenität der Nutzerinnen und Nutzer ist es für öffentliche Verwaltungen häufig problematisch, klare Anforderungen zu erheben und zu erfüllen. Hinzukommen strukturelle und organisatorische Gegebenheiten wie beispielsweise ausgeprägte Entscheidungshierarchien, die eine nutzerzentrierte Vorgehensweise erschweren können. Darüber hinaus sieht sich die öffentliche Verwaltung zunehmend mit komplexer werdenden Problemen konfrontiert. Es stellt sich daher die Frage, wie in der öffentlichen Verwaltung ein moderner Ansatz zur Nutzerzentrierung und Problemlösung eingesetzt werden kann. Dieser Artikel präsentiert die Ergebnisse einer Einzelfallstudie bei der Niedersächsischen Landesbehörde für Straßenbau und Verkehr (NLStBV). Wir haben mit einer Fokusgruppe einen Design-Thinking-Workshop durchgeführt, um Potenziale und Anwendungsmöglichkeiten des Ansatzes in der öffentlichen Verwaltung zu identifizieren. Auf Basis einer SWOT-Analyse haben wir die Ergebnisse untersucht und geben vier konkrete Handlungsempfehlungen für die Einführung sowie Nutzung von Design Thinking
Nutzerzentrierung in der öffentlichen Verwaltung: Welche Potenziale bietet Design Thinking?
CDI Systems Are Stably Maintained by a Cell-Contact Mediated Surveillance Mechanism.
Contact-dependent growth inhibition (CDI) systems are widespread amongst Gram-negative bacteria where they play important roles in inter-cellular competition and biofilm formation. CDI+ bacteria use cell-surface CdiA proteins to bind neighboring bacteria and deliver C-terminal toxin domains. CDI+ cells also express CdiI immunity proteins that specifically neutralize toxins delivered from adjacent siblings. Genomic analyses indicate that cdi loci are commonly found on plasmids and genomic islands, suggesting that these Type 5 secretion systems are spread through horizontal gene transfer. Here, we examine whether CDI toxin and immunity activities serve to stabilize mobile genetic elements using a minimal F plasmid that fails to partition properly during cell division. This F plasmid is lost from Escherichia coli populations within 50 cell generations, but is maintained in ~60% of the cells after 100 generations when the plasmid carries the cdi gene cluster from E. coli strain EC93. By contrast, the ccdAB "plasmid addiction" module normally found on F exerts only a modest stabilizing effect. cdi-dependent plasmid stabilization requires the BamA receptor for CdiA, suggesting that plasmid-free daughter cells are inhibited by siblings that retain the CDI+ plasmid. In support of this model, the CDI+ F plasmid is lost rapidly from cells that carry an additional cdiI immunity gene on a separate plasmid. These results indicate that plasmid stabilization occurs through elimination of non-immune cells arising in the population via plasmid loss. Thus, genetic stabilization reflects a strong selection for immunity to CDI. After long-term passage for more than 300 generations, CDI+ plasmids acquire mutations that increase copy number and result in 100% carriage in the population. Together, these results show that CDI stabilizes genetic elements through a toxin-mediated surveillance mechanism in which cells that lose the CDI system are detected and eliminated by their siblings
Recommended from our members
CDI Systems Are Stably Maintained by a Cell-Contact Mediated Surveillance Mechanism.
Contact-dependent growth inhibition (CDI) systems are widespread amongst Gram-negative bacteria where they play important roles in inter-cellular competition and biofilm formation. CDI+ bacteria use cell-surface CdiA proteins to bind neighboring bacteria and deliver C-terminal toxin domains. CDI+ cells also express CdiI immunity proteins that specifically neutralize toxins delivered from adjacent siblings. Genomic analyses indicate that cdi loci are commonly found on plasmids and genomic islands, suggesting that these Type 5 secretion systems are spread through horizontal gene transfer. Here, we examine whether CDI toxin and immunity activities serve to stabilize mobile genetic elements using a minimal F plasmid that fails to partition properly during cell division. This F plasmid is lost from Escherichia coli populations within 50 cell generations, but is maintained in ~60% of the cells after 100 generations when the plasmid carries the cdi gene cluster from E. coli strain EC93. By contrast, the ccdAB "plasmid addiction" module normally found on F exerts only a modest stabilizing effect. cdi-dependent plasmid stabilization requires the BamA receptor for CdiA, suggesting that plasmid-free daughter cells are inhibited by siblings that retain the CDI+ plasmid. In support of this model, the CDI+ F plasmid is lost rapidly from cells that carry an additional cdiI immunity gene on a separate plasmid. These results indicate that plasmid stabilization occurs through elimination of non-immune cells arising in the population via plasmid loss. Thus, genetic stabilization reflects a strong selection for immunity to CDI. After long-term passage for more than 300 generations, CDI+ plasmids acquire mutations that increase copy number and result in 100% carriage in the population. Together, these results show that CDI stabilizes genetic elements through a toxin-mediated surveillance mechanism in which cells that lose the CDI system are detected and eliminated by their siblings
Plasmid pCdiBAI becomes fixed in populations after long-term passage.
<p><b>A</b>) Three <i>E</i>. <i>coli</i> EPI100 pCdiBAI lineages were passaged for 500 cell generations, and the percentage of cells that carry plasmid pCdiBAI determined. <b>B</b>) Total DNA was isolated from the lineages shown in panel A after 500 generations (g500). DNA samples were digested with PstI and analyzed by Southern blot using radiolabeled probes specific for plasmid pCdiBAI and the <i>groL</i> chromosomal locus. Control samples isolated from cells lacking plasmid (F-), cells carrying pOri<sub>F</sub> and unpassaged cells carrying pCdiBAI (pCdiBAI<sup>g0</sup>) were also analyzed. Molecular standards were generated by PCR of plasmid pCdiBAI and the genomic <i>groL</i> locus. <b>C</b>) Plasmid DNA was isolated from the lineages in panel A after 0 (g0), 100 (g100), 200 (g200) and 300 (g300) generations. The plasmids were transformed into <i>E</i>. <i>coli ΔbamA</i>::<i>cat</i> pZS21-BamA<sup>ECL</sup> and the percentage of cells carrying plasmid pCdiBAI was monitored over 100 generations.</p
Colicin/immunity genes stabilize genetic elements.
<p><i>E</i>. <i>coli</i> populations harboring mini-F plasmid derivatives were passaged daily in broth culture for 100 generations. Randomly selected colonies were screened for Amp<sup>R</sup> after each passage to determine the percentage of cells that retain the plasmid. The average percentage of Amp<sup>R</sup> colonies is plotted with the standard error indicated by grey shading. <b>A</b>) <i>E</i>. <i>coli</i> MG1655 pOri<sub>F</sub>. <b>B</b>) <i>E</i>. <i>coli</i> MG1655 pColE5. <b>C</b>) <i>E</i>. <i>coli</i> MG1655 pCdiBAI. <b>D</b>) Plasmid pColE5 provides a competitive advantage. <i>E</i>. <i>coli</i> MG1655 harboring the indicated mini-F derivatives were co-cultured at a 1:1 ratio with plasmid-free, Rif<sup>R</sup> MG1655 cells. The competitive index was calculated as described in Methods. The average ± standard error is presented for three independent experiments.</p
<i>E</i>. <i>coli cdiBAI</i> gene clusters are located on genomic islands.
<p><i>E</i>. <i>coli</i> genomic islands harboring <i>cdiBAI</i> genes were aligned using the Artemis comparison tool. PAI II islands from 4 different <i>E</i>. <i>coli</i> strains are shown in panel A. Panel B displays 4 genomic islands inserted at <i>pheV</i> in the indicated strains. Homologous CDI DNA sequences are highlighted in blue-violet, homologous non-CDI DNA sequences are shown in light green (direct orientation) and light red (inverted orientation), and genes of interest are shown in orange. Abbreviations: <i>yeeUV</i>, toxin-antitoxin module; choline util, genes involved in choline metabolism; <i>hly</i>, hemolysin biosynthesis; F17, F17 fimbrial genes; <i>prf</i>, P-related fimbriae; lipid biosyn., putative lipid biosynthesis operon; HBA, genes involved in hydroxybenzoate degradation; <i>kps</i>, capsular assembly operon; T1SS, Type I secretion system.</p
CDI-mediated plasmid stabilization.
<p><i>E</i>. <i>coli</i> EPI100 populations harboring mini-F plasmid derivatives were passaged daily in broth culture for 100 generations. Randomly selected colonies were screened Amp<sup>R</sup> after each passage to determine the percentage of cells that retain the plasmid. The average percentage of Amp<sup>R</sup> colonies is plotted with the standard error indicated by grey shading. <b>A</b>) <i>E</i>. <i>coli</i> EP100 Δ<i>bamA</i>::<i>cat</i> pZS21-BamA pOri<sub>F</sub>. <b>B</b>) <i>E</i>. <i>coli</i> EP100 Δ<i>bamA</i>::<i>cat</i> pZS21-BamA pCcdAB. <b>C</b>) <i>E</i>. <i>coli</i> EP100 Δ<i>bamA</i>::<i>cat</i> pZS21-BamA pCdiBAI. <b>D</b>) <i>E</i>. <i>coli</i> EP100 Δ<i>bamA</i>::<i>cat</i> pZS21-BamA<sup>ECL</sup> pCdiBAI.</p
The <i>cdiBAI</i><sup>EC93</sup> genes are functional after horizontal transfer.
<p><b>A)</b>. <i>C</i>. <i>freundii</i> cells harboring pDAL878-<i>cat</i> (CDI<sup>–</sup>) or pDAL660Δ1-39-<i>cat</i> (CDI<sup>+</sup>) were co-cultured with <i>E</i>. <i>coli</i> MG1655 target cells that carry pTrc99A (vector, Amp<sup>R</sup>) or pTrc99A::<i>cdiI</i><sup>EC93</sup> (pCdiI, Amp<sup>R</sup>). Competitive indices were calculated as the ratio of <i>C</i>. <i>freundii</i> to <i>E</i>. <i>coli</i> cells at 4 h divided by the initial ratio. The average ± standard error is presented for three independent experiments. <b>B to D).</b> <i>C</i>. <i>freundii</i> cells harboring pDAL660Δ1-39-<i>cat</i> (CDI<sup>+</sup>) or pDAL878-<i>cat</i> (CDI<sup>–</sup>) were passaged daily in broth culture for 50 generations. The cells also contained plasmids that express <i>bamA</i><sup>Eco</sup> or <i>bamA</i><sup>ECL</sup> where indicated. Randomly selected colonies were screened for Cm-resistance after each passage to determine the percentage of cells that retain the plasmid. The average percentage of Cm<sup>R</sup> colonies is plotted with the standard error indicated by grey shading.</p
