175 research outputs found

    Structural, Electronic, and Vibrational Properties of Isoniazid and Its Derivative N-Cyclopentylidenepyridine-4-carbohydrazide: A Quantum Chemical Study

    Get PDF
    Isoniazid (Laniazid, Nydrazid), also known as isonicotinylhydrazine (INH), is an organic compound that is the first-line medication in prevention and treatment of tuberculosis. The optimized geometry of the isoniazid and its derivative N-cyclopentylidenepyridine-4-carbohydrazide molecule has been determined by the method of density functional theory (DFT). For both geometry and total energy, it has been combined with B3LYP functionals having LANL2DZ and 6-311 G (d, p) as the basis sets. Using this optimized structure, we have calculated the infrared wavenumbers and compared them with the experimental data. The calculated wavenumbers by LANL2DZ are in an excellent agreement with the experimental values. On the basis of fully optimized ground-state structure, TDDFT//B3LYP/LANL2DZ calculations have been used to determine the low-lying excited states of isoniazid and its derivative. Based on these results, we have discussed the correlation between the vibrational modes and the crystalline structure of isoniazid and its derivative. A complete assignment is provided for the observed FTIR spectra. The molecular HOMO, LUMO composition, their respective energy gaps, and MESP contours/surfaces have also been drawn to explain the activity of isoniazid and its derivative.</jats:p

    Quantum Mechanical Study on the Structure and Vibrational Spectra of Cyclobutanone and 1,2-Cyclobutanedione

    Get PDF
    For 1,2-cyclobutanedione and cyclobutanone, we have carried out a comparative study of different methods like B3LYP, LSDA, and B3PW91 of DFT using 6-31G (d, p) basis set and MP2 method. On comparing these methods we find that B3PW91 method is closer to the experimental one. So by using B3PW91 method, we have made a comparative study of their structures, normal mode analysis, and other properties of the two derivatives of cyclobutane. The molecular HOMO, LUMO composition, their respective energy gaps, and MESP contours/surfaces have also been drawn to explain the activity of 1,2-cyclobutanedione and cyclobutanone

    Vibrational analysis of boldine hydrochloride using QM/MM approach

    Get PDF
    A complete vibrational analysis was performed on the molecular structure of boldine hydrochloride using QM/MM method. The equilibrium geometry, harmonic vibrational frequencies and infrared intensities were calculated by QM/MM method with B3LYP/6-31G(d) and universal force field (UFF) combination using ONIOM code. We found the geometry obtained by the QM/MM method to be very accurate, and we can use this rapid method in place of time consuming ab initio methods for large molecules. A detailed interpretation of the infrared spectra of boldine hydrochloride is reported. The scaled theoretical wave numbers are in perfect agreement with the experimental values. The FT-IR spectra of boldine hydrochloride in the region 4000–500 cm–1were recorded in CsI (solid phase) and in chloroform with concentration 5 and 10 mg/ml.</jats:p

    Greedy Algorithms for Finding Entanglement Swap Paths in Quantum Networks

    Get PDF
    The entanglement swap primitive facilitates the establishment of shared entanglement between non-adjacent nodes in a quantum network. This shared entanglement can subsequently be used for executing quantum communication protocols. The fundamental problem in quantum networks is to determine a path for entanglement swapping in response to demands for entanglement sharing between pairs of nodes. We investigate variants of this problem in this work. We propose a framework of Greedy algorithms that can be tweaked towards optimizing on various objective functions. In conjunction with a novel Spatial and Temporal (split across multiple paths) splitting approach to entanglement routing, we use this framework, which we call GST, to investigate the scenario when the demands are specified in terms of a starting time and a deadline. Considering the fragile nature of quantum memory, "bursty"demands are natural, and therefore the setting is important. We study the algorithm for maximizing the number of satisfied demands and the number of entangled pairs shared. We report empirical results on the performance against these objective functions, and compare with a naive algorithm that involves neither temporal and spatial splitting of the demands, nor the greedy approach to scheduling the demands

    Cerebral Venous Thrombosis and Acute Pulmonary Embolism following Varicella Infection

    Get PDF
    Varicella infection is caused by varicella-zoster virus (VZV) and commonly presents as a self-limiting skin manifestation in children. VZV also causes cerebral arterial vasculopathy and antibody-mediated hypercoagulable states leading to thrombotic complications in children, although there are very few such reports in adults. Postulated causal factors include vasculitis, direct endothelial damage, or acquired protein S deficiency secondary to molecular mimicry. These induced autoantibodies to protein S could lead to acquired protein S deficiency and produce a hypercoagulable state causing venous sinus thrombosis. Here we report the case of a 26-year-old man who presented with cortical venous sinus thrombosis and acute pulmonary embolism following varicella infection. Both conditions responded to anticoagulation treatment

    Association of acute toxic encephalopathy with litchi consumption in an outbreak in Muzaffarpur, India, 2014: a case-control study

    Get PDF
    Background Outbreaks of unexplained illness frequently remain under-investigated. In India, outbreaks of an acute neurological illness with high mortality among children occur annually in Muzaffarpur, the country’s largest litchi cultivation region. In 2014, we aimed to investigate the cause and risk factors for this illness. Methods In this hospital-based surveillance and nested age-matched case-control study, we did laboratory investigations to assess potential infectious and non-infectious causes of this acute neurological illness. Cases were children aged 15 years or younger who were admitted to two hospitals in Muzaffarpur with new-onset seizures or altered sensorium. Age-matched controls were residents of Muzaffarpur who were admitted to the same two hospitals for a non-neurologic illness within seven days of the date of admission of the case. Clinical specimens (blood, cerebrospinal fluid, and urine) and environmental specimens (litchis) were tested for evidence of infectious pathogens, pesticides, toxic metals, and other non-infectious causes, including presence of hypoglycin A or methylenecyclopropylglycine (MCPG), naturally-occurring fruit-based toxins that cause hypoglycaemia and metabolic derangement. Matched and unmatched (controlling for age) bivariate analyses were done and risk factors for illness were expressed as matched odds ratios and odds ratios (unmatched analyses). Findings Between May 26, and July 17, 2014, 390 patients meeting the case definition were admitted to the two referral hospitals in Muzaffarpur, of whom 122 (31%) died. On admission, 204 (62%) of 327 had blood glucose concentration of 70 mg/dL or less. 104 cases were compared with 104 age-matched hospital controls. Litchi consumption (matched odds ratio [mOR] 9·6 [95% CI 3·6 – 24]) and absence of an evening meal (2·2 [1·2–4·3]) in the 24 h preceding illness onset were associated with illness. The absence of an evening meal significantly modified the effect of eating litchis on illness (odds ratio [OR] 7·8 [95% CI 3·3–18·8], without evening meal; OR 3·6 [1·1–11·1] with an evening meal). Tests for infectious agents and pesticides were negative. Metabolites of hypoglycin A, MCPG, or both were detected in 48 [66%] of 73 urine specimens from case-patients and none from 15 controls; 72 (90%) of 80 case-patient specimens had abnormal plasma acylcarnitine profiles, consistent with severe disruption of fatty acid metabolism. In 36 litchi arils tested from Muzaffarpur, hypoglycin A concentrations ranged from 12·4 μg/g to 152·0 μg/g and MCPG ranged from 44·9 μg/g to 220·0 μg/g. Interpretation Our investigation suggests an outbreak of acute encephalopathy in Muzaffarpur associated with both hypoglycin A and MCPG toxicity. To prevent illness and reduce mortality in the region, we recommended minimising litchi consumption, ensuring receipt of an evening meal and implementing rapid glucose correction for suspected illness. A comprehensive investigative approach in Muzaffarpur led to timely public health recommendations, underscoring the importance of using systematic methods in other unexplained illness outbreaks

    Nanocolumnar Crystalline Vanadium Oxide-Molybdenum Oxide Antireflective Smart Thin Films with Superior Nanomechanical Properties

    Get PDF
    Vanadium oxide-molybdenum oxide (VO-MO) thin (21-475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V2O5, V2O3 and VO2 along with MoO3. Reversible or smart transition was found to occur just above the room temperature i.e., at similar to 45-50 degrees C. The VO-MO films deposited on quartz showed a gradual decrease in transmittance with increase in film thickness. But, the VO-MO films on silicon exhibited reflectance that was significantly lower than that of the substrate. Further, the effect of low temperature (i.e., 100 degrees C) vacuum (10(-5) mbar) annealing on optical properties e.g., solar absorptance, transmittance and reflectance as well as the optical constants e.g., optical band gap, refractive index and extinction coefficient were studied. Sheet resistance, oxidation state and nanomechanical properties e.g., nanohardness and elastic modulus of the VO-MO thin films were also investigated in as-deposited condition as well as after the vacuum annealing treatment. Finally, the combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films

    Efficacy and safety of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells (Stempeucel®): preclinical and clinical trial in osteoarthritis of the knee joint

    Get PDF
    BACKGROUND: Osteoarthritis (OA) is a common and debilitating chronic degenerative disease of the joints. Currently, cell-based therapy is being explored to address the repair of damaged articular cartilage in the knee joint. METHODS: The in vitro differentiation potential of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells (Stempeucel®) was determined by differentiating the cells toward the chondrogenic lineage and quantifying sulfated glycosaminoglycan (sGAG). The mono-iodoacetate (MIA)-induced preclinical model of OA has been used to demonstrate pain reduction and cartilage formation. In the clinical study, 60 OA patients were randomized to receive different doses of cells (25, 50, 75, or 150 million cells) or placebo. Stempeucel® was administered by intra-articular (IA) injection into the knee joint, followed by 2 ml hyaluronic acid (20 mg). Subjective evaluations—visual analog scale (VAS) for pain, intermittent and constant osteoarthritis pain (ICOAP), and Western Ontario and McMaster Universities Osteoarthritis (WOMAC-OA) index—were performed at baseline and at 1, 3, 6, and 12 months of follow-up. Magnetic resonance imaging of the knee was performed at baseline, and at 6 and 12 months follow-up for cartilage evaluation. RESULTS: Stempeucel® differentiated into the chondrogenic lineage in vitro with downregulation of Sox9 and upregulation of Col2A genes. Furthermore, Stempeucel® differentiated into chondrocytes and synthesized a significant amount of sGAG (30 ± 1.8 μg/μg GAG/DNA). In the preclinical model of OA, Stempeucel® reduced pain significantly and also repaired damaged articular cartilage in rats. In the clinical study, IA administration of Stempeucel® was safe, and a trend towards improvement was seen in the 25-million-cell dose group in all subjective parameters (VAS, ICOAP, andWOMAC-OA scores), although this was not statistically significant when compared to placebo. Adverse events were predominant in the higher dose groups (50, 75, and 150 million cells). Knee pain and swelling were the most common adverse events. The whole-organ magnetic resonance imaging score of the knee did not reveal any difference from baseline and the placebo group. CONCLUSION: Intra-articular administration of Stempeucel® is safe. A twenty-five-million-cell dose may be the most effective among the doses tested for pain reduction. Clinical studies with a larger patient population are required to demonstrate a robust therapeutic efficacy of Stempeucel® in OA. TRIAL REGISTRATION: Clinicaltrials.gov NCT01453738. Registered 13 October 2011

    Development of correction techniques for the J-PET Scanner

    Get PDF
    Objective: Positron emission tomography (PET) is a widely used medical imaging technique that allows for non-invasive imaging of metabolic processes. However, traditional PET scanners rely on costly inorganic scintillators that limit their accessibility, especially in light of emerging long axial field-of-view devices. The modular J-PET scanner, an innovative alternative, uses 50-cm-long plastic scintillator strips, offering a cost-effective and modular solution. In this study we develop and assess the PET data correction techniques required for quantitative image reconstruction. Methods: We present methods for attenuation correction, random coincidence correction using the delayed time window (DTW) technique and scatter correction based on Monte Carlo simulations. Phantom studies using the NEMA IQ phantom were performed to qualitatively evaluate these corrections. Results: The results demonstrate that our implemented corrections for attenuation and random and scattered coincidences successfully improve the uniformity of tracer distribution in homogenous volumes and significantly reduce undesired activity in cold regions. Despite limitations in sensitivity and axial resolution, the applied correction techniques effectively enhance image quality, providing promising results for future applications. Conclusions: These findings highlight the potential of the modular J-PET system to offer affordable PET imaging and to pave the way for a total-body PET scanner based on plastic scintillators. Future work will focus on quantitative validation and the implementation of these corrections for human subject imaging

    A review on the heat and mass transfer phenomena in nanofluid coolants with special focus on automotive applications

    Get PDF
    Engineered suspensions of nanosized particles (nanofluids) are characterized by superior thermal properties. Due to the increasing need for ultrahigh performance cooling in many industries, nanofluids have been widely investigated as next-generation coolants. However, the multiscale nature of nanofluids implies nontrivial relations between their design characteristics and the resulting thermo-physical properties, which are far from being fully understood. This pronounced sensitivity is the main reason for some contradictory results among both experimental evidence and theoretical considerations presented in the literature. In this Review, the role of fundamental heat and mass transfer mechanisms governing thermo-physical properties of nanofluids is assessed, from both experimental and theoretical point of view. Starting from the characteristic nanoscale transport phenomena occurring at the particle-fluid interface, a comprehensive review of the influence of geometrical (particle shape, size and volume concentration), physical (temperature) and chemical (particle material, pH and surfactant concentration in the base fluid) parameters on the nanofluid properties was carried out. Particular focus was devoted to highlight the advantages of using nanofluids as coolants for automotive heat exchangers, and a number of design guidelines was suggested for balancing thermal conductivity and viscosity enhancement in nanofluids. This Review may contribute to a more rational design of the thermo-physical properties of particle suspensions, therefore easing the translation of nanofluid technology from small-scale research laboratories to large-scale industrial applications
    corecore