113 research outputs found

    Paramagnetic behaviour of silver nanoparticles generated by decomposition of silver oxalate

    Get PDF
    Silver oxalate Ag2C2O4, was already proposed for soldering applications, due to the formation when it is decomposed by a heat treatment, of highly sinterable silver nanoparticles. When slowly decomposed at low temperature (125 °C), the oxalate leads however to silver nanoparticles isolated from each other. As soon as these nanoparticles are formed, the magnetic susceptibility at room temperature increases from -3.14 10-7 emu.Oe-1.g-1 (silver oxalate) up to -1.92 10-7 emu.Oe-1.g-1 (metallic silver). At the end of the oxalate decomposition, the conventional diamagnetic behaviour of bulk silver, is observed from room temperature to 80 K. A diamagnetic-paramagnetic transition is however revealed below 80 K leading at 2 K, to silver nanoparticles with a positive magnetic susceptibility. This original behaviour, compared to the one of bulk silver, can be ascribed to the nanometric size of the metallic particles

    Unraveling the Contribution of High Temperature Stage to Jiang-Flavor Daqu, a Liquor Starter for Production of Chinese Jiang-Flavor Baijiu, With Special Reference to Metatranscriptomics

    Get PDF
    Jiang-flavor (JF) daqu is a liquor starter used for production of JF baijiu, a well-known distilled liquor in China. Although a high temperature stage (70°C) is necessary for qualifying JF daqu, little is known regarding its active microbial community and functional enzymes, along with its role in generating flavor precursors for JF baijiu aroma. In this investigation, based on metatranscriptomics, fungi, such as Aspergillus and Penicillium, were identified as the most active microbial members and 230 carbohydrate-active enzymes were identified as potential saccharifying enzymes at 70°C of JF daqu. Notably, most of enzymes in identified carbohydrate and energy pathways showed lower expression levels at 70°C of JF daqu than those at the high temperature stage (62°C) of Nong-flavor (NF) daqu, indicating lowering capacities of saccharification and fermentation by high temperature stage. Moreover, many enzymes, especially those related to the degradation of aromatic compounds, were only detected with low expression levels at 70°C of JF daqu albeit not at 62°C of NF daqu, indicating enhancing capacities of generating special trace aroma compounds in JF daqu by high temperature stage. Additionally, most of enzymes related to those capacities were highly expressed at 70°C by fungal genus of Aspergillus, Coccidioides, Paracoccidioides, Penicillium, and Rasamsonia. Therefore, this study not only sheds light on the crucial functions of high temperature stage but also paves the way to improve the quality of JF baijiu and provide active community and functional enzymes for other fermentation industries

    Fatty Acid Accumulations and Transcriptome Analyses Under Different Treatments in a Model Microalga Euglena gracilis

    Get PDF
    With the continuous growth of the world’s population and the increasing development of industrialization, the demand for energy by human beings has been expanding, resulting in an increasingly severe energy crisis. Microalgae are considered the most potential alternatives to traditional fossil fuels due to their many advantages, like fast growth rate, strong carbon sequestration capacity, and low growth environment requirements. Euglena can use carbon sources such as glucose, ethanol, and others for heterotrophic growth. Moreover, Euglena is highly adaptable to the environment and has a high tolerance to various environmental stresses, such as salinity, heavy metals, antibiotics, etc. Different treatments of Euglena cells could affect their growth and the accumulation of bioactive substances, especially fatty acids. To expand the industrial application of Euglena as a potential biodiesel candidate, we determine the physiological responses of Euglena against environmental stresses (antibiotics, heavy metals, salinity) or carbon resources (glucose and ethanol), and evaluate the potential for higher quality and yield of fatty acid with a high growth rate. Adding glucose into the culture media increases cell biomass and fatty acid production with high-quality biodiesel characters. The transcriptome analysis helped explore the possible regulation and biosynthesis of fatty acids under different treatments and exploited in the improvement of biodiesel production. This study provides insights for further improvement and various culture treatments for Euglena-based biodiesel and jet fuels

    Duckweed: a starch-hyperaccumulating plant under cultivation with a combination of nutrient limitation and elevated CO2

    Get PDF
    IntroductionThe increasing global demand for starch has created an urgent need to identify more efficient and sustainable production methods. However, traditional starch sources, such as crop-based options, experience significant bottlenecks due to limitations in land use, water consumption, and the impacts of climate change. Therefore, there is a pressing need to explore and develop new sources of starch.MethodsWe develop a novel duckweed cultivation technology that combines nutrients limitation and CO2 supplementation to achieve very high starch content. In this study, we integrated whole-genome sequencing, epigenomics, transcriptomics, enzyme activity, and composition variation to elucidate the mechanisms of efficient starch accumulation in duckweed in terms of starch accumulation and carbon partitioning, regulation of the expression of genes in the starch metabolic pathway, and sucrose biosynthesis and transportation.Results and discussionAlthough Landoltia punctata exhibits dramatic gene family contraction, its starch content and productivity reached 72.2% (dry basis) and 10.4 g m-2 d-1, respectively, in 10 days, equivalent to a yield of 38.0 t ha-1 y-1, under nutrient limitation treatment with elevated CO2 levels. We also examined the mechanism of high starch accumulation in duckweed. This phenomenon is associated with the regulation of DNA methylation and transcription factors as well as the significantly upregulated transcription levels and the increased activities of key enzymes involved in starch biosynthesis. Moreover, while nitrogen redistribution was increased, sucrose biosynthesis and transportation and lignocellulose biosynthesis were reduced. These alterations led to a reduction in lignocellulose and protein contents and ultimately an increase in the accumulation of starch in the chloroplasts.ConclusionThis work demonstrates the potential of duckweed as a highly efficient starch producer

    Application of LTE in mine wireless communication system

    No full text
    In view of problem that existing mine wireless communication system cannot meet development requirement of mine informatization, a design scheme of mine-used LTE wireless communication system was proposed, and composition and function characteristics of the system were introduced. The system uses all-IP design, and can access mine industrial Ethernet, which can realize functions of mobile voice communication, video communication, trunked dispatching and multimedia message, and extensive application of video monitoring, safety monitoring, mobile office and hidden danger management

    An Internal Quad-Band Printed Monopole Antenna for Oval-Shaped Mobile Terminals

    Full text link

    An Internal Quad-Band Antenna for Oval-Shaped Mobile Phones

    Full text link

    Advanced Adjusted Pressure Casting Process

    No full text

    A Progressive Simplification Method for Buildings Based on Structural Subdivision

    No full text
    Building simplification is an important research area in automatic map generalization. Up to now, many approaches have been proposed by scholars. However, in the continuous transformation of scales for buildings, keeping the main shape characteristics, area, and orthogonality of buildings are always the key and difficult points. Therefore, this paper proposes a method of progressive simplification for buildings based on structural subdivision. In this paper, iterative simplification is adopted, which transforms the problem of building simplification into the simplification of the minimum details of building outlines. Firstly, a top priority structure (TPS) is determined, which represents the smallest detail in the outline of the building. Then, according to the orthogonality and concave–convex characteristics, the TPS are classified as 62 subdivisions, which cover the local structure of the building polygon. Then, the subdivisions are divided into four simplification types. The building is simplified to eliminate the TPS continuously, retaining the right-angle characteristics and area as much as possible, until the results satisfy the constraints and rules of simplification. A topographic dataset (1:1 K) collected from Kadaster was used for our experiments. In order to evaluate the algorithm, many tests were undertaken, including tests of multi-scale simplification and simplification of typical buildings, which indicate that this method can realize multi-scale presentation of buildings. Compared with the existing simplification methods, the comparison results show that the proposed method can simplify buildings effectively, which has certain advantages in keeping shape characteristics, area, and rectangularity.</jats:p
    corecore