16 research outputs found

    Olfactory and Gustatory Recovery Time Evaluation of COVID-19: A Systematic Review and Meta-Analysis

    Get PDF
    Background: Olfactory dysfunction is a common symptom of Coronavirus disease 2019 (COVID-19). In this study, we aimed to evaluate the recovery rate and duration of these symptoms in COVID-19patients. Methods: This systematic review was conducted by searching PubMed and Google Scholar from April 1st, 2020, until October 1st, 2022, using the terms ‘‘COVID-19’’ OR ‘‘COV-2,’’ OR ‘‘Coronavirus 2’’ OR coronavirus AND ‘‘loss of smell’’ OR Anosmia OR Hyposmia OR olfaction OR ‘‘olfactory loss’’ AND ageusia OR Hypogeusia OR dysgeusia OR ‘‘gustatory loss’’ OR gustation OR ‘‘loss of taste’’. The references of included studies were also manually screened. Random-effects meta-analysis was performed. Results: One hundred and twenty-five studies with test-confirmed COVID-19 infection from 31 countries were included. 62 publications which reported data on loss of taste were used to estimate patients' recovery rate in 13700 COVID-19 patients. Accordingly, the time to recovery of loss of taste among COVID-19 patients ranged from 2±0.352 to 43.6 ± 28.5 days. The estimated overall pooled recovery rate of loss of taste among COVID-19 patients was 74%. The estimated overall pooled time to recover loss of taste among COVID-19 patients was 11.44 days [95% CI 8.11, 14.77(]. 90 publications which reported data on loss of smell were used to estimate patients' recovery rate in 20027 COVID-19 patients. Accordingly, the time to recover the loss of smell among COVID-19 patients ranged from 2.44±0.352 to 31.9 ± 30.7 days The estimated overall pooled recovery rate of loss of smell among COVID-19 patients was 72%. The estimated overall pooled time to recover loss of smell among COVID-19 patients was 12.87 days [95% CI)1011, 15.64(]. Conclusion: The recovery rate of loss of smell and taste among COVID-19 patients was high globally, and time to recovery of loss of smell and taste among COVID-19 patients usually was less than 2 weeks; regional differences supported the relevance of these symptoms as important markers. Health workers must consider smell and taste symptoms as suspicion indices for the empirical diagnosis of COVID-19 infection and reassure patients with their high recovery rate in a short period of time

    Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    This online publication has been corrected. The corrected version first appeared at thelancet.com on September 28, 2023BACKGROUND : Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050. METHODS : Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively. FINDINGS : In 2021, there were 529 million (95% uncertainty interval [UI] 500–564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8–6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7–9·9]) and, at the regional level, in Oceania (12·3% [11·5–13·0]). Nationally, Qatar had the world’s highest age-specific prevalence of diabetes, at 76·1% (73·1–79·5) in individuals aged 75–79 years. Total diabetes prevalence—especially among older adults—primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1–96·8) of diabetes cases and 95·4% (94·9–95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5–71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5–30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22–1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1–17·6) in north Africa and the Middle East and 11·3% (10·8–11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%. INTERPRETATION : Diabetes remains a substantial public health issue. Type 2 diabetes, which makes up the bulk of diabetes cases, is largely preventable and, in some cases, potentially reversible if identified and managed early in the disease course. However, all evidence indicates that diabetes prevalence is increasing worldwide, primarily due to a rise in obesity caused by multiple factors. Preventing and controlling type 2 diabetes remains an ongoing challenge. It is essential to better understand disparities in risk factor profiles and diabetes burden across populations, to inform strategies to successfully control diabetes risk factors within the context of multiple and complex drivers.Bill & Melinda Gates Foundation.http://www.thelancet.comam2024School of Health Systems and Public Health (SHSPH)SDG-03:Good heatlh and well-bein

    Radiomics Features in Predicting Human Papillomavirus Status in Oropharyngeal Squamous Cell Carcinoma: A Systematic Review, Quality Appraisal, and Meta-Analysis

    No full text
    We sought to determine the diagnostic accuracy of radiomics features in predicting HPV status in oropharyngeal squamous cell carcinoma (SCC) compared to routine paraclinical measures used in clinical practice. Twenty-six articles were included in the systematic review, and thirteen were used for the meta-analysis. The overall sensitivity of the included studies was 0.78, the overall specificity was 0.76, and the overall area under the ROC curve was 0.84. The diagnostic odds ratio (DOR) equaled 12 (8, 17). Subgroup analysis showed no significant difference between radiomics features extracted from CT or MR images. Overall, the studies were of low quality in regard to radiomics quality score, although most had a low risk of bias based on the QUADAS-2 tool. Radiomics features showed good overall sensitivity and specificity in determining HPV status in OPSCC, though the low quality of the included studies poses problems for generalizability

    Application of ChatGPT in multilingual medical education: How does ChatGPT fare in 2023's Iranian residency entrance examination

    Get PDF
    Background: ChatGPT is a large language model (LLM) artificial intelligence instrument trained on massive amounts of text data extracted from the internet and/or user input. In the present article, we aim to apply the latest version of ChatGPT to the Iranian Medical Residency Examination. Methods: The Iranian Medical Residency Examination is composed of 200 multichoice questions covering all domains of medicine. We used ChatGPT to translate questions into English, French, and Spanish. We fed the questions as multiple-choice questions and allowed ChatGPT to provide comprehensive answers and justifications for its choices. Results: ChatGPT was able to answer 161 (81.3% = 161/198) questions correctly when the Persian language was used. When the questions were translated into English, French, and Spanish, ChatGPT answered six, one, and five additional questions correctly, respectively. When comparing the different languages, there was no significant difference in the functioning of ChatGPT in different languages using either the McNemar test or the Binomial test. Conclusion: ChatGPT can deliver above-average performance in the Iranian Medical Residency Examination, demonstrating its potential for using language models in medicine

    The Additive Value of Radiomics Features Extracted from Baseline MR Images to the Barcelona Clinic Liver Cancer (BCLC) Staging System in Predicting Transplant-Free Survival in Patients with Hepatocellular Carcinoma: A Single-Center Retrospective Analysis

    No full text
    Background: To study the additive value of radiomics features to the BCLC staging system in clustering HCC patients. Methods: A total of 266 patients with HCC were included in this retrospective study. All patients had undergone baseline MR imaging, and 95 radiomics features were extracted from 3D segmentations representative of lesions on the venous phase and apparent diffusion coefficient maps. A random forest algorithm was utilized to extract the most relevant features to transplant-free survival. The selected features were used alongside BCLC staging to construct Kaplan–Meier curves. Results: Out of 95 extracted features, the three most relevant features were incorporated into random forest classifiers. The Integrated Brier score of the prediction error curve was 0.135, 0.072, and 0.048 for the BCLC, radiomics, and combined models, respectively. The mean area under the receiver operating curve (ROC curve) over time for the three models was 81.1%, 77.3%, and 56.2% for the combined radiomics and BCLC models, respectively. Conclusions: Radiomics features outperformed the BCLC staging system in determining prognosis in HCC patients. The addition of a radiomics classifier increased the classification capability of the BCLC model. Texture analysis features could be considered as possible biomarkers in predicting transplant-free survival in HCC patients

    The Additive Value of Radiomics Features Extracted from Baseline MR Images to the Barcelona Clinic Liver Cancer (BCLC) Staging System in Predicting Transplant-Free Survival in Patients with Hepatocellular Carcinoma: A Single-Center Retrospective Analysis

    No full text
    Background: To study the additive value of radiomics features to the BCLC staging system in clustering HCC patients. Methods: A total of 266 patients with HCC were included in this retrospective study. All patients had undergone baseline MR imaging, and 95 radiomics features were extracted from 3D segmentations representative of lesions on the venous phase and apparent diffusion coefficient maps. A random forest algorithm was utilized to extract the most relevant features to transplant-free survival. The selected features were used alongside BCLC staging to construct Kaplan–Meier curves. Results: Out of 95 extracted features, the three most relevant features were incorporated into random forest classifiers. The Integrated Brier score of the prediction error curve was 0.135, 0.072, and 0.048 for the BCLC, radiomics, and combined models, respectively. The mean area under the receiver operating curve (ROC curve) over time for the three models was 81.1%, 77.3%, and 56.2% for the combined radiomics and BCLC models, respectively. Conclusions: Radiomics features outperformed the BCLC staging system in determining prognosis in HCC patients. The addition of a radiomics classifier increased the classification capability of the BCLC model. Texture analysis features could be considered as possible biomarkers in predicting transplant-free survival in HCC patients.</jats:p

    The Additive Value of Radiomics Features Extracted from Baseline MR Images to the Barcelona Clinic Liver Cancer (BCLC) Staging System in Predicting Transplant-Free Survival in Patients with Hepatocellular Carcinoma: A Single-Center Retrospective Analysis

    No full text
    Background: To study the additive value of radiomics features to the BCLC staging system in clustering HCC patients. Methods: A total of 266 patients with HCC were included in this retrospective study. All patients had undergone baseline MR imaging, and 95 radiomics features were extracted from 3D segmentations representative of lesions on the venous phase and apparent diffusion coefficient maps. A random forest algorithm was utilized to extract the most relevant features to transplant-free survival. The selected features were used alongside BCLC staging to construct Kaplan&ndash;Meier curves. Results: Out of 95 extracted features, the three most relevant features were incorporated into random forest classifiers. The Integrated Brier score of the prediction error curve was 0.135, 0.072, and 0.048 for the BCLC, radiomics, and combined models, respectively. The mean area under the receiver operating curve (ROC curve) over time for the three models was 81.1%, 77.3%, and 56.2% for the combined radiomics and BCLC models, respectively. Conclusions: Radiomics features outperformed the BCLC staging system in determining prognosis in HCC patients. The addition of a radiomics classifier increased the classification capability of the BCLC model. Texture analysis features could be considered as possible biomarkers in predicting transplant-free survival in HCC patients
    corecore