651 research outputs found
Light splitting in nanoporous gold and silver
Figure Persented: Nanoporous gold and silver exhibit strong, omnidirectional broad-band absorption in the far-field. Even though they consist entirely of gold or silver atoms, these materials appear black and dull, in great contrast with the familiar luster of continuous gold and silver. The nature of these anomalous optical characteristics is revealed here by combining nanoscale electron energy loss spectroscopy with discrete dipole and boundary element simulations. It is established that the strong broad-band absorption finds its origin in nanoscale splitting of light, with great local variations in the absorbed color. This nanoscale polychromaticity results from the excitation of localized surface plasmon resonances, which are imaged and analyzed here with deep sub-wavelength, nanometer spatial resolution. We demonstrate that, with this insight, it is possible to customize the absorbance and reflectance wavelength bands of thin nanoporous films by only tuning their morphology. © 2011 American Chemical Society
Local biases drive, but do not determine, the perception of illusory trajectories
When a dot moves horizontally across a set of tilted lines of alternating orientations, the dot appears to be moving up and down along its trajectory. This perceptual phenomenon, known as the slalom illusion, reveals a mismatch between the veridical motion signals and the subjective percept of the motion trajectory, which has not been comprehensively explained. In the present study, we investigated the empirical boundaries of the slalom illusion using psychophysical methods. The phenomenon was found to occur both under conditions of smooth pursuit eye movements and constant fixation, and to be consistently amplified by intermittently occluding the dot trajectory. When the motion direction of the dot was not constant, however, the stimulus display did not elicit the expected illusory percept. These findings confirm that a local bias towards perpendicularity at the intersection points between the dot trajectory and the tilted lines cause the illusion, but also highlight that higher-level cortical processes are involved in interpreting and amplifying the biased local motion signals into a global illusion of trajectory perception
Local biases drive, but do not determine, the perception of illusory trajectories
When a dot moves horizontally across a set of tilted lines of alternating orientations, the dot appears to be moving up and down along its trajectory. This perceptual phenomenon, known as the slalom illusion, reveals a mismatch between the veridical motion signals and the subjective percept of the motion trajectory, which has not been comprehensively explained. In the present study, we investigated the empirical boundaries of the slalom illusion using psychophysical methods. The phenomenon was found to occur both under conditions of smooth pursuit eye movements and constant fixation, and to be consistently amplified by intermittently occluding the dot trajectory. When the motion direction of the dot was not constant, however, the stimulus display did not elicit the expected illusory percept. These findings confirm that a local bias towards perpendicularity at the intersection points between the dot trajectory and the tilted lines cause the illusion, but also highlight that higher-level cortical processes are involved in interpreting and amplifying the biased local motion signals into a global illusion of trajectory perception
Recommended from our members
Default perception of high-speed motion
When human observers are exposed to even slight motion signals followed by brief visual transients—stimuli containing no detectable coherent motion signals—they perceive large and salient illusory jumps. This novel effect, which we call “high phi”, challenges well-entrenched assumptions about the perception of motion, namely the minimal-motion principle and the breakdown of coherent motion perception with steps above an upper limit. Our experiments with transients such as texture randomization or contrast reversal show that the magnitude of the jump depends on spatial frequency and transient duration, but not on the speed of the inducing motion signals, and the direction of the jump depends on the duration of the inducer. Jump magnitude is robust across jump directions and different types of transient. In addition, when a texture is actually displaced by a large step beyond dmax, a breakdown of coherent motion perception is expected, but in the presence of an inducer observers again perceive coherent displacements at or just above dmax. In sum, across a large variety of stimuli, we find that when incoherent motion noise is preceded by a small bias, instead of perceiving little or no motion, as suggested by the minimal-motion principle, observers perceive jumps whose amplitude closely follows their own dmax limits
Rapid motion adaptation reveals the temporal dynamics of spatiotemporal correlation between ON and OFF pathways
At the early stages of visual processing, information is processed by two major thalamic pathways encoding brightness increments (ON) and decrements (OFF). Accumulating evidence suggests that these pathways interact and merge as early as in primary visual cortex. Using regular and reverse-phi motion in a rapid adaptation paradigm, we investigated the temporal dynamics of within and across pathway mechanisms for motion processing. When the adaptation duration was short (188 ms), reverse-phi and regular motion led to similar adaptation effects, suggesting that the information from the two pathways are combined efficiently at early-stages of motion processing. However, as the adaption duration was increased to 752 ms, reverse-phi and regular motion showed distinct adaptation effects depending on the test pattern used, either engaging spatiotemporal correlation between the same or opposite contrast polarities. Overall, these findings indicate that spatiotemporal correlation within and across ON-OFF pathways for motion processing can be selectively adapted, and support those models that integrate within and across pathway mechanisms for motion processing
Recommended from our members
Low-level mediation of directionally specific motion after-effects: motion perception is not necessary
Previous psychophysical experiments with normal human observers have shown that adaptation to a moving dot stream causes directionally specific repulsion in the perceived angle of a subsequently viewed, moving probe. In this paper, we used a 2AFC task with roving pedestals to determine the conditions necessary and sufficient for producing directionally specific repulsion with compound adaptors, each ofwhich contains two oppositely moving, differently colored, component streams. Experiment 1 provides a demonstration of repulsion between single-component adaptors and probes moving at approximately 90° or 270°. In Experiment 2 oppositely moving dots in the adaptor were paired to preclude the appearance of motion. Nonetheless, repulsion remained strong when the angle betweeneach probe stream and one component was approximately 30°. In Experiment 3 adapting dot-pairs were kept stationary during their limited lifetimes. Their orientation content alone proved insufficient for producing repulsion. In Experiments 4-6 the angle between probe and both adapting components was approximately 90°or 270°. Directional repulsion was found when observers were asked to visually track one of the adapting components (Experiment 6), but not when observers were asked to attentionally track it (Experiment 5), nor while passively viewing the adaptor (Experiment 4). Our results are consistent with a low-level mechanism for motion adaptation. It is not selective for stimulus color and it is not susceptible to attentional modulation.The most likely cortical locus of adaptation is area V1
Ecomorphological diversity of Australian tadpoles
Ecomorphology is the association between an organism’s morphology and its ecology. Larval anuran amphibians (tadpoles) are classified into distinct ecomorphological guilds based upon morphological features and observations of their ecology. The extent to which guilds comprise distinct morphologies resulting from convergent evolution, the degree of morphological variability within each guild, and the degree of continuity in shape between guilds has not previously been examined in a phylogenetically-informed statistical framework. Here we examine tadpole ecomorphological guilds at a macroevolutionary scale by examining morphological diversity across the Australian continent. We use ecological data to classify species to guilds, and geometric morphometrics to quantify body shape in the tadpoles of 188 species, 77% of Australian frog diversity. We find that the ecomorphological guilds represented by Australian species are morphologically distinct, but there is substantial morphological variation associated with each guild, and all guilds together form a morphological continuum. However in a phylogenetic comparative context there is no significant difference in body shape among guilds. We also relate the morphological diversity of the Australian assemblage of tadpoles to a global sample and demonstrate that ecomorphological diversity of Australian tadpoles is limited with respect to worldwide species. Our results demonstrate that general patterns of ecomorphological variation are upheld in Australian tadpoles, but tadpole body shape is more variable and possibly generalist than generally appreciated.Emma Sherratt, Marion Anstis, J. Scott Keog
Motion dazzle and camouflage as distinct anti-predator defenses.
BACKGROUND: Camouflage patterns that hinder detection and/or recognition by antagonists are widely studied in both human and animal contexts. Patterns of contrasting stripes that purportedly degrade an observer's ability to judge the speed and direction of moving prey ('motion dazzle') are, however, rarely investigated. This is despite motion dazzle having been fundamental to the appearance of warships in both world wars and often postulated as the selective agent leading to repeated patterns on many animals (such as zebra and many fish, snake, and invertebrate species). Such patterns often appear conspicuous, suggesting that protection while moving by motion dazzle might impair camouflage when stationary. However, the relationship between motion dazzle and camouflage is unclear because disruptive camouflage relies on high-contrast markings. In this study, we used a computer game with human subjects detecting and capturing either moving or stationary targets with different patterns, in order to provide the first empirical exploration of the interaction of these two protective coloration mechanisms. RESULTS: Moving targets with stripes were caught significantly less often and missed more often than targets with camouflage patterns. However, when stationary, targets with camouflage markings were captured less often and caused more false detections than those with striped patterns, which were readily detected. CONCLUSIONS: Our study provides the clearest evidence to date that some patterns inhibit the capture of moving targets, but that camouflage and motion dazzle are not complementary strategies. Therefore, the specific coloration that evolves in animals will depend on how the life history and ontogeny of each species influence the trade-off between the costs and benefits of motion dazzle and camouflage.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Haptic adaptation to slant: No transfer between exploration modes
Human touch is an inherently active sense: to estimate an object’s shape humans often move their hand across its surface. This way the object is sampled both in a serial (sampling different parts of the object across time) and parallel fashion (sampling using different parts of the hand simultaneously). Both the serial (moving a single finger) and parallel (static contact with the entire hand) exploration modes provide reliable and similar global shape information, suggesting the possibility that this information is shared early in the sensory cortex. In contrast, we here show the opposite. Using an adaptation-and-transfer paradigm, a change in haptic perception was induced by slant-adaptation using either the serial or parallel exploration mode. A unified shape-based coding would predict that this would equally affect perception using other exploration modes. However, we found that adaptation-induced perceptual changes did not transfer between exploration modes. Instead, serial and parallel exploration components adapted simultaneously, but to different kinaesthetic aspects of exploration behaviour rather than object-shape per se. These results indicate that a potential combination of information from different exploration modes can only occur at down-stream cortical processing stages, at which adaptation is no longer effective
Adult frogs and tadpoles have different macroevolutionary patterns across the Australian continent
Published online: 14 August 2017Developmental changes through an animal’s life are generally understood to contribute to the resulting adult morphology. Possible exceptions are species with complex life cycles, where individuals pass through distinct ecological and morphological life stages during their ontogeny, ending with metamorphosis to the adult form. Antagonistic selection is expected to drive low genetic correlations between life stages, theoretically permitting stages to evolve independently. Here we describe, using Australian frog radiation, the evolutionary consequences on morphological evolution when life stages are under different selective pressures. We use morphometrics to characterize body shape of tadpoles and adults across 166 species of frog and investigate similarities in the two resulting morphological spaces (morphospaces) to test for concerted evolution across metamorphosis in trait variation during speciation. A clear pattern emerges: Australian frogs and their tadpoles are evolving independently; their markedly different morphospaces and contrasting estimated evolutionary histories of body shape diversification indicate that different processes are driving morphological diversification at each stage. Tadpole morphospace is characterized by rampant homoplasy, convergent evolution and high lineage density. By contrast, the adult morphospace shows greater phylogenetic signal, low lineage density and divergent evolution between the main clades. Our results provide insight into the macroevolutionary consequences of a biphasic life cycle.Emma Sherratt, Marta Vidal-García, Marion Anstis and J. Scott Keog
- …
