132 research outputs found

    Gender Issues: Proposing New Paradigms

    Get PDF
    Gender diffeences transgressing beyond the biological, have been amply evidenced in the work scenario. Corporates are making endeavours to change work environment and policies so as to make the corporate culture harmonious for both men and women. Our attempt in this paper is to identify gender issues, real or imagined, and suggest recommendations. We also propose to analyze, in the paper, the inherent truth, if any, in these differences. Are they only figments of the imagination, exist in the perception of the employees, or are they a reality? Our study is the first of its kind in India. It is aimed at identifying the issues that both men and women face in a professional environment, and to suggest recommendations which the policymakers can use. We conducted the study in 3 phases consisting of pilot study, focus group discussions and questionnaire survey. Each phase helped in building on the topic and making the study more robust. On the basis of the findings, a few recommendations have been made which will be a value-add to organizations for implementing changes in policies, and designing communcation campaigns and forums where inhibiting and enabling thoughts and expressions can be freely discussed. Additionally, we have been able to collate some of the best practices followed in the IT and ITeS Sector which will be an important resource for oganizations to build on.

    Arithmetic Circuit Complexity of Division and Truncation

    Get PDF

    The Zeta (ζ\zeta) Notation for Complex Asymptotes

    Full text link
    Time Complexity is an important metric to compare algorithms based on their cardinality. The commonly used, trivial notations to qualify the same are the Big-Oh, Big-Omega, Big-Theta, Small-Oh, and Small-Omega Notations. All of them, consider time a part of the real entity, i.e., Time coincides with the horizontal axis in the argand plane. But what if the Time rather than completely coinciding with the real axis of the argand plane, makes some angle with it? We are trying to focus on the case when the Time Complexity will have both real and imaginary components. For Instance, if $T\left(n\right)=\ n\log{n},theexistingasymptomaticnotationsarecapableofhandlingthatinrealtimeBut,ifwecomeacrossaproblemwhere,, the existing asymptomatic notations are capable of handling that in real time But, if we come across a problem where, T\left(n\right)=\ n\log{n}+i\cdot n^2,where,, where, i=\sqrt[2]{-1},theexistingasymptomaticnotationswillnotbeabletocatchup.Tomitigatethesame,inthisresearch,wewouldconsiderproposingtheZetaNotation(, the existing asymptomatic notations will not be able to catch up. To mitigate the same, in this research, we would consider proposing the Zeta Notation (\zeta$), which would qualify Time in both the Real and Imaginary Axis, as per the Argand Plane

    A Review on Optimality Investigation Strategies for the Balanced Assignment Problem

    Full text link
    Mathematical Selection is a method in which we select a particular choice from a set of such. It have always been an interesting field of study for mathematicians. Accordingly, Combinatorial Optimization is a sub field of this domain of Mathematical Selection, where we generally, deal with problems subjecting to Operation Research, Artificial Intelligence and many more promising domains. In a broader sense, an optimization problem entails maximising or minimising a real function by systematically selecting input values from within an allowed set and computing the function's value. A broad region of applied mathematics is the generalisation of metaheuristic theory and methods to other formulations. More broadly, optimization entails determining the finest virtues of some fitness function, offered a fixed space, which may include a variety of distinct types of decision variables and contexts. In this work, we will be working on the famous Balanced Assignment Problem, and will propose a comparative analysis on the Complexity Metrics of Computational Time for different Notions of solving the Balanced Assignment Problem

    Unified View of Damage leaves Planimetry & Analysis Using Digital Images Processing Techniques

    Full text link
    The detection of leaf diseases in plants generally involves visual observation of patterns appearing on the leaf surface. However, there are many diseases that are distinguished based on very subtle changes in these visually observable patterns. This paper attempts to identify plant leaf diseases using image processing techniques. The focus of this study is on the detection of citrus leaf canker disease. Canker is a bacterial infection of leaves. Symptoms of citrus cankers include brown spots on the leaves, often with a watery or oily appearance. The spots (called lesions in botany) are usually yellow. It is surrounded by a halo of the leaves and is found on both the top and bottom of the leaf. This paper describes various methods that have been used to detect citrus leaf canker disease. The methods used are histogram comparison and k-means clustering. Using these methods, citrus canker development was detected based on histograms generated based on leaf patterns. The results thus obtained can be used, after consultation with experts in the field of agriculture, to identify suitable treatments for the processes used

    Inhibition of preS1-hepatocyte interaction by an array of recombinant human antibodies from naturally recovered individuals

    Get PDF
    Neutralizing monoclonal antibodies are being found to be increasingly useful in viral infections. In hepatitis B infection, antibodies are proven to be useful for passive prophylaxis. The preS1 region (21–47a.a.) of HBV contains the viral hepatocyte-binding domain crucial for its attachment and infection of hepatocytes. Antibodies against this region are neutralizing and are best suited for immune-based neutralization of HBV, especially in view of their not recognizing decoy particles. Anti-preS1 (21–47a.a.) antibodies are present in serum of spontaneously recovered individuals. We generated a phage-displayed scFv library using circulating lymphocytes from these individuals and selected four preS1-peptide specific scFvs with markedly distinct sequences from this library. All the antibodies recognized the blood-derived and recombinant preS1 containing antigens. Each scFv showed a discrete binding signature, interacting with different amino acids within the preS1-peptide region. Ability to prevent binding of the preS1 protein (N-terminus 60a.a.) to HepG2 cells stably expressing hNTCP (HepG2-hNTCP-C4 cells), the HBV receptor on human hepatocytes was taken as a surrogate marker for neutralizing capacity. These antibodies inhibited preS1-hepatocyte interaction individually and even better in combination. Such a combination of potentially neutralizing recombinant antibodies with defined specificities could be used for preventing/managing HBV infections, including those by possible escape mutants

    Efficient deletion of microRNAs using CRISPR/Cas9 with dual guide RNAs

    Get PDF
    MicroRNAs (miRNAs) are short non-coding RNAs that play crucial roles in gene regulation, exerting post-transcriptional silencing, thereby influencing cellular function, development, and disease. Traditional loss-of-function methods for studying miRNA functions, such as miRNA inhibitors and sponges, present limitations in terms of specificity, transient effects, and off-target effects. Similarly, CRISPR/Cas9-based editing of miRNAs using single guide RNAs (sgRNAs) also has limitations in terms of design space for generating effective gRNAs. In this study, we introduce a novel approach that utilizes CRISPR/Cas9 with dual guide RNAs (dgRNAs) for the rapid and efficient generation of short deletions within miRNA genomic regions. Through the expression of dgRNAs through single-copy lentiviral integration, this approach achieves over a 90% downregulation of targeted miRNAs within a week. We conducted a comprehensive analysis of various parameters influencing efficient deletion formation. In addition, we employed doxycycline (Dox)-inducible expression of Cas9 from the AAVS1 locus, enabling homogeneous, temporal, and stage-specific editing during cellular differentiation. Compared to miRNA inhibitory methods, the dgRNA-based approach offers higher specificity, allowing for the deletion of individual miRNAs with similar seed sequences, without affecting other miRNAs. Due to the increased design space, the dgRNA-based approach provides greater flexibility in gRNA design compared to the sgRNA-based approach. We successfully applied this approach in two human cell lines, demonstrating its applicability for studying the mechanisms of human erythropoiesis and pluripotent stem cell (iPSC) biology and differentiation. Efficient deletion of miR-451 and miR-144 resulted in blockage of erythroid differentiation, and the deletion of miR-23a and miR-27a significantly affected iPSC survival. We have validated the highly efficient deletion of genomic regions by editing protein-coding genes, resulting in a significant impact on protein expression. This protocol has the potential to be extended to delete multiple miRNAs within miRNA clusters, allowing for future investigations into the cooperative effects of the cluster members on cellular functions. The protocol utilizing dgRNAs for miRNA deletion can be employed to generate efficient pooled libraries for high-throughput comprehensive analysis of miRNAs involved in different biological processes
    corecore