2,440 research outputs found

    Scaling Theory and Numerical Simulations of Aerogel Sintering

    Full text link
    A simple scaling theory for the sintering of fractal aerogels is presented. The densification at small scales is described by an increase of the lower cut-off length aa accompanied by a decrease of the upper cut-off length ξ\xi, in order to conserve the total mass of the system. Scaling laws are derived which predict how aa, ξ\xi and the specific pore surface area Σ\Sigma should depend on the density ρ\rho. Following the general ideas of the theory, numerical simulations of sintering are proposed starting from computer simulations of aerogel structure based on a diffusion-limited cluster-cluster aggregation gelling process. The numerical results for aa, ξ\xi and Σ\Sigma as a function of ρ\rho are discussed according to the initial aerogel density. The scaling theory is only fully recovered in the limit of very low density where the original values of aa and ξ\xi are well separated. These numerical results are compared with experiments on partially densified aerogels.Comment: RevTex, 17 pages + 6 postscript figures appended using "uufiles". To appear in J. of Non-Cryst. Solid

    Biomass carbon stocks and their changes in northern China's grasslands during 1982-2006

    Get PDF
    Grassland covers approximately one-third of the area of China and plays an important role in the global terrestrial carbon (C) cycle. However, little is known about biomass C stocks and dynamics in these grasslands. During 2001-2005, we conducted five consecutive field sampling campaigns to investigate above-and below-ground biomass for northern China's grasslands. Using measurements obtained from 341 sampling sites, together with a NDVI (normalized difference vegetation index) time series dataset over 1982-2006, we examined changes in biomass C stock during the past 25 years. Our results showed that biomass C stock in northern China's grasslands was estimated at 557.5 Tg C (1 Tg=10(12) g), with a mean density of 39.5 g C m(-2) for above-ground biomass and 244.6 g C m(-2) for below-ground biomass. An increasing rate of 0.2 Tg C yr(-1) has been observed over the past 25 years, but grassland biomass has not experienced a significant change since the late 1980s. Seasonal rainfall (January-July) was the dominant factor driving temporal dynamics in biomass C stock; however, the responses of grassland biomass to climate variables differed among various grassland types. Biomass in arid grasslands (i.e., desert steppe and typical steppe) was significantly associated with precipitation, while biomass in humid grasslands (i.e., alpine meadow) was positively correlated with mean January-July temperatures. These results suggest that different grassland ecosystems in China may show diverse responses to future climate changes

    Mechanism of Cisplatin-Induced Cytotoxicity Is Correlated to Impaired Metabolism Due to Mitochondrial ROS Generation

    Get PDF
    The chemotherapeutic use of cisplatin is limited by its severe side effects. In this study, by conducting different omics data analyses, we demonstrated that cisplatin induces cell death in a proximal tubular cell line by suppressing glycolysis-and tricarboxylic acid (TCA)/mitochondria-related genes. Furthermore, analysis of the urine from cisplatin-treated rats revealed the lower expression levels of enzymes involved in glycolysis, TCA cycle, and genes related to mitochondrial stability and confirmed the cisplatin-related metabolic abnormalities. Additionally, an increase in the level of p53, which directly inhibits glycolysis, has been observed. Inhibition of p53 restored glycolysis and significantly reduced the rate of cell death at 24 h and 48 h due to p53 inhibition. The foremost reason of cisplatin-related cytotoxicity has been correlated to the generation of mitochondrial reactive oxygen species (ROS) that influence multiple pathways. Abnormalities in these pathways resulted in the collapse of mitochondrial energy production, which in turn sensitized the cells to death. The quenching of ROS led to the amelioration of the affected pathways. Considering these observations, it can be concluded that there is a significant correlation between cisplatin and metabolic dysfunctions involving mROS as the major player.116224Ysciescopu

    Production and Characterization of Glucosamine from Bovine Synovial Fluid.

    Get PDF
    Objectives: Glucosamine is a natural aminomonosaccharide, which is a normal constituent of glycosaminoglycans in cartilage matrix and synovial fluid. Glucosamine has a role in the synthesis of cell membrane (building) lining, collagen, osteoid, and bone matrix. The present work was undertaken to investigate bovine synovial fluid for the production of glucosamine. The method used for isolation of glucosamine included acid hydrolysis of the fluid. Results: The produced glucosamine(0.73-2.60%) had been purified and characterized by different identification methods that include: chemical colour tests; thin layer chromatography; C18- high performance liquid chromatography and infrared spectrophotometery compared to standard glucosamine. We can conclude that, there is an essential need for every body to produce and/or to take glucosamine supplements to stimulate the production of synovial fluid which lubricates cartilage and keeps joint healthy. This led to the fact that reliable analytical methods should be carried for quality assessment of glucosamine commercial products used by consumers. In this research the investigated bovine synovial fluid was recognized to afford a considerable amount of glucosamine obtained by acid hydrolysis. Conclusions: The adopted and the described methods of analysis could be applied in qualitative and quantitative determination surveys of different supplement products containing glucosamine

    Broken R Parity Contributions to Flavor Changing Rates and CP Asymmetries in Fermion Pair Production at Leptonic Colliders

    Get PDF
    We examine the effects of the R parity odd renormalizable interactions on flavor changing rates and CP violation asymmetries in the production of fermion-antifermion pairs at ee+e^-- e^+ leptonic colliders. The produced fermions may be leptons, down-quarks or up-quarks, and the center of mass energies may range from the Z-boson pole up to 1000 1000 GeV. Off the Z-boson pole, the flavor changing rates are controlled by tree level amplitudes and the CP asymmetries by interference terms between tree and loop level amplitudes. At the Z-boson pole, both observables involve loop amplitudes. The lepton number violating interactions, associated with the coupling constants, \l_{ijk}, \l'_{ijk}, are only taken into account. The consideration of loop amplitudes is restricted to the photon and Z-boson vertex corrections. We briefly review flavor violation physics at colliders. We present numerical results using a single, species and family independent, mass parameter, m~\tilde m, for all the scalar superpartners and considering simple assumptions for the family dependence of the R parity odd coupling constants.Comment: Latex File. 23 pages. 4 postscript figures. 1 table. Revised version with new results and several corrections in numerical result
    corecore