1,005 research outputs found

    Orbital Degeneracy and Peierls Instability in Triangular Lattice Superconductor Ir1x_{1-x}Ptx_xTe2_2

    Full text link
    We have studied electronic structure of triangular lattice Ir1x_{1-x}Ptx_xTe2_2 superconductor using photoemission spectroscopy and model calculations. Ir 4f4f core-level photoemission spectra show that Ir 5d5d t2gt_{2g} charge modulation established in the low temperature phase of IrTe2_2 is suppressed by Pt doping. This observation indicates that the suppression of charge modulation is related to the emergence of superconductivity. Valence-band photoemission spectra of IrTe2_2 suggest that the Ir 5d5d charge modulation is accompanied by Ir 5d5d orbital reconstruction. Based on the photoemission results and model calculations, we argue that the orbitally-induced Peierls effect governs the charge and orbital instability in the Ir1x_{1-x}Ptx_xTe2_2.Comment: 5 pages,4 figure

    Spin-density-wave transition of (TMTSF)2_2PF6_6 at high magnetic fields

    Get PDF
    The transverse magnetoresistance of the Bechgaard salt (TMTSF)2_2PF6_6 has been measured for various pressures, with the field up to 24 T parallel to the lowest conductivity direction c^{\ast}. A quadratic behavior is observed in the magnetic field dependence of the spin-density-wave (SDW) transition temperature TSDWT_{\rm {SDW}}. With increasing pressure, TSDWT_{\rm {SDW}} decreases and the coefficient of the quadratic term increases. These results are consistent with the prediction of the mean-field theory based on the nesting of the quasi one-dimensional Fermi surface. Using a mean field theory, TSDWT_{\rm {SDW}} for the perfect nesting case is estimated as about 16 K. This means that even at ambient pressure where TSDWT_{\rm {SDW}} is 12 K, the SDW phase of (TMTSF)2_2PF6_6 is substantially suppressed by the two-dimensionality of the system.Comment: 11pages,6figures(EPS), accepted for publication in PR

    Heavy Quarkonium in a weakly-coupled quark-gluon plasma below the melting temperature

    Get PDF
    We calculate the heavy quarkonium energy levels and decay widths in a quark-gluon plasma, whose temperature T and screening mass m_D satisfy the hierarchy m alpha_s >> T >> m alpha_s^2 >> m_D (m being the heavy-quark mass), at order m alpha_s^5. We first sequentially integrate out the scales m, m alpha_s and T, and, next, we carry out the calculations in the resulting effective theory using techniques of integration by regions. A collinear region is identified, which contributes at this order. We also discuss the implications of our results concerning heavy quarkonium suppression in heavy ion collisions.Comment: 25 pages, 2 figure

    Electronic structure reconstruction by orbital symmetry breaking in IrTe2

    Full text link
    We report an angle-resolved photoemission spectroscopy (ARPES) study on IrTe2 which exhibits an interesting lattice distortion below 270 K and becomes triangular lattice superconductors by suppressing the distortion via chemical substitution or intercalation. ARPES results at 300 K show multi-band Fermi surfaces with six-fold symmetry which are basically consistent with band structure calculations. At 20 K in the distorted phase, whereas the flower shape of the outermost Fermi surface does not change from that at 300 K, topology of the inner Fermi surfaces is strongly modified by the lattice distortion. The Fermi surface reconstruction by the distortion depends on the orbital character of the Fermi surfaces, suggesting importance of Ir 5d and/or Te 5p orbital symmetry breaking.Comment: 4pages, 4figure

    SDW and FISDW transition of (TMTSF)2_2ClO4_4 at high magnetic fields

    Full text link
    The magnetic field dependence of the SDW transition in (TMTSF)2_2ClO4_4 for various anion cooling rates has been measured, with the field up to 27T parallel to the lowest conductivity direction cc^{\ast}. For quenched (TMTSF)2_2ClO4_4, the SDW transition temperature TSDWT_{\rm {SDW}} increases from 4.5K in zero field up to 8.4K at 27T. A quadratic behavior is observed below 18T, followed by a saturation behavior. These results are consistent with the prediction of the mean-field theory. From these behaviors, TSDWT_{\rm {SDW}} is estimated as TSDW0T_{\rm {SDW_0}}=13.5K for the perfect nesting case. This indicates that the SDW phase in quenched (TMTSF)2_2ClO4_4, where TSDWT_{\rm {SDW}} is less than 6K, is strongly suppressed by the two-dimensionality of the system. In the intermediate cooled state in which the SDW phase does not appear in zero field, the transition temperature for the field-induced SDW shows a quadratic behavior above 12T and there is no saturation behavior even at 27T, in contrast to the FISDW phase in the relaxed state. This behavior can probably be attributed to the difference of the dimerized gap due to anion ordering.Comment: 4pages,5figures(EPS), accepted for publication in PR

    Important Roles of Te 5p and Ir 5d Spin-orbit Interactions on the Multi-band Electronic Structure of Triangular Lattice Superconductor Ir1-xPtxTe2

    Full text link
    We report an angle-resolved photoemission spectroscopy (ARPES) study on a triangular lattice superconductor Ir1x_{1-x}Ptx_{x}Te2_2 in which the Ir-Ir or Te-Te bond formation, the band Jahn-Teller effect, and the spin-orbit interaction are cooperating and competing with one another. The Fermi surfaces of the substituted system are qualitatively similar to the band structure calculations for the undistorted IrTe2_2 with an upward chemical potential shift due to electron doping. A combination of the ARPES and the band structure calculations indicates that the Te 5p5p spin-orbit interaction removes the px/pyp_x/p_y orbital degeneracy and induces px±ipyp_x \pm ip_y type spin-orbit coupling near the A point. The inner and outer Fermi surfaces are entangled by the Te 5p5p and Ir 5d5d spin-orbit interactions which may provide exotic superconductivity with singlet-triplet mixing.Comment: 10 pages, 4 figure

    Electronic structure of NiS_{1-x}Se_x

    Full text link
    We investigate the electronic structure of the metallic NiS1x_{1-x}Sex_x system using various electron spectroscopic techniques. The band structure results do not describe the details of the spectral features in the experimental spectrum, even for this paramagnetic metallic phase. However, a parameterized many-body multi-band model is found to be successful in describing the Ni~2pp core level and valence band, within the same model. The asymmetric line shape as well as the weak intensity feature in the Ni~2pp core level spectrum has been ascribed to extrinsic loss processes in the system. The presence of satellite features in the valence band spectrum shows the existence of the lower Hubbard band, deep inside the pdpd metallic regime, consistent with the predictions of the dynamical mean field theory.Comment: To be published in Physical Review B, 18 pages and 5 figure

    Ultrasoft NLL Running of the Nonrelativistic O(v) QCD Quark Potential

    Full text link
    Using the nonrelativistic effective field theory vNRQCD, we determine the contribution to the next-to-leading logarithmic (NLL) running of the effective quark-antiquark potential at order v (1/mk) from diagrams with one potential and two ultrasoft loops, v being the velocity of the quarks in the c.m. frame. The results are numerically important and complete the description of ultrasoft next-to-next-to-leading logarithmic (NNLL) order effects in heavy quark pair production and annihilation close to threshold.Comment: 25 pages, 7 figures, 3 tables; minor modifications, typos corrected, references added, footnote adde

    Dimensional recurrence relations: an easy way to evaluate higher orders of expansion in ϵ\epsilon

    Full text link
    Applications of a method recently suggested by one of the authors (R.L.) are presented. This method is based on the use of dimensional recurrence relations and analytic properties of Feynman integrals as functions of the parameter of dimensional regularization, dd. The method was used to obtain analytical expressions for two missing constants in the ϵ\epsilon-expansion of the most complicated master integrals contributing to the three-loop massless quark and gluon form factors and thereby present the form factors in a completely analytic form. To illustrate its power we present, at transcendentality weight seven, the next order of the ϵ\epsilon-expansion of one of the corresponding most complicated master integrals. As a further application, we present three previously unknown terms of the expansion in ϵ\epsilon of the three-loop non-planar massless propagator diagram. Only multiple ζ\zeta values at integer points are present in our result.Comment: Talk given at the International Workshop `Loops and Legs in Quantum Field Theory' (April 25--30, 2010, W\"orlitz, Germany)
    corecore