259 research outputs found

    Warping and Precession of Accretion Disks Around Magnetic Stars: Nonlinear Evolution

    Full text link
    The inner region of the accretion disk around a magnetized star (T Tauri star, white dwarf or neutron star) is subjected to magnetic torques that induce warping and precession of the disk. These torques arise from the interaction between the stellar field and the induced electric currents in the disk. We carry out numerical simulations of the nonlinear evolution of warped, viscous accretion disks driven by the magnetic torques. We show that the disk can develop into a highly warped steady state in which the disk attains a fixed (warped) shape and precesses rigidly. The warp is most pronounced at the disk inner radius (near the magnetosphere boundary). As the system parameters (such as accretion rate) change, the disk can switch between a completely flat state (warping stable) and a highly warped state. The precession of warped disks may be responsible for a variety of quasi-periodic oscillations or radiation flux variabilities observed in many different systems, including young stellar objects and X-ray binaries.Comment: 16 pages, 7 figures; extended parameter searches, changes in discussion; accepted for publication in Ap

    Wave Excitation in Disks Around Rotating Magnetic Stars

    Full text link
    The accretion disk around a rotating magnetic star (neutron star, white dwarf or T Tauri star) is subjected to periodic vertical magnetic forces from the star, with the forcing frequency equal to the stellar spin frequency or twice the spin frequency. This gives rise bending waves in the disk that may influence the variabilities of the system. We study the excitation, propagation and dissipation of these waves using a hydrodynamical model coupled with a generic model description of the magnetic forces. The m=1m=1 bending waves are excited at the Lindblad/vertical resonance, and propagate either to larger radii or inward toward the corotation resonance where dissipation takes place. While the resonant torque is negligible compared to the accretion torque, the wave nevertheless may reach appreciable amplitude and can cause or modulate flux variabilities from the system. We discuss applications of our result to the observed quasi-periodic oscillations from various systems, in particular neutron star low-mass X-ray binaries.Comment: Small changes/clarifications. To be published in ApJ, Aug.20,2008 issu

    Recent X-ray measurements of the accretion-powered pulsar 4U 1907+09

    Get PDF
    X-ray observations of the accreting X-ray pulsar 4U~1907+09, obtained during February 1996 with the Proportional Counter Array on the Rossi X-ray Timing Experiment (RXTE), have enabled the first measurement of the intrinsic pulse period Ppulse since 1984: Ppulse=440.341[+0.012,-0.017] s. 4U 1907+09 is in a binary system with a blue supergiant. The orbital parameters were solved and this enabled the correction for orbital delay effects of a measurement of Ppulse obtained in 1990 with Ginga. Thus, three spin down rates could be extracted from four pulse periods obtained in 1983, 1984, 1990, and 1996. These are within 8% equal to a value of dPpulse/dt=+0.225 s/yr. This suggest that the pulsar is perhaps in a monotonous spin down mode since its discovery in 1983. Furthermore, the RXTE observations show transient ~18 s oscillations during a flare that lasted about 1 hour. The oscillations may be interpreted as Keplerian motion of an accretion disk near the magnetospheric radius. This, and the notion that the co-rotation radius is much larger than any conceivable value for the magnetospheric radius (because of the long spin period), renders it unlikely that this pulsar spins near equilibrium like is suspected for other slowing accreting X-ray pulsars. We suggest as an alternative that perhaps the frequent occurrence of a retrograde transient accretion disk may be consistently slowing the pulsar down. Further observations of flares can provide more evidence of this.Comment: 26 pages, 11 figures, to be published in Astrophysical Journal part I on March 20, 199

    Double-Peaked X-Ray Lines from the Oxygen/Neon-Rich Accretion Disk in 4U1626-67

    Full text link
    We report on a 39 ks observation of the 7.7-s low-mass X-ray binary pulsar 4U1626-67 with the High Energy Transmission Grating Spectrometer (HETGS) on the Chandra X-Ray Observatory. This ultracompact system consists of a disk-accreting magnetic neutron star and a very low mass, hydrogen-depleted companion in a 42-min binary. We have resolved the previously reported Ne/O emission line complex near 1 keV into Doppler pairs of broadened (2500 km/s FWHM) lines from highly ionized Ne and O. In most cases, the blue and red line components are of comparable strength, with blueshifts of 1550-2610 km/s and redshifts of 770-1900 km/s. The lines appear to originate in hot (10^6 K), dense material just below the X-ray-heated skin of the outer Keplerian accretion disk, or else possibly in a disk wind driven from the pulsar's magnetopause. The observed photoelectric absorption edges of Ne and O appear nearly an order of magnitude stronger than expected from interstellar material and are likely formed in cool, metal-rich material local to the source. Based on the inferred local abundance ratios, we argue that the mass donor in this binary is probably the 0.02 M_sun chemically fractionated core of a C-O-Ne or O-Ne-Mg white dwarf which has previously crystallized.Comment: 9 pages. Accepted for publication in ApJ. Table 2 correcte

    Automatic detection of limb prominences in 304 A EUV images

    Get PDF
    A new algorithm for automatic detection of prominences on the solar limb in 304 A EUV images is presented, and results of its application to SOHO/EIT data discussed. The detection is based on the method of moments combined with a classifier analysis aimed at discriminating between limb prominences, active regions, and the quiet corona. This classifier analysis is based on a Support Vector Machine (SVM). Using a set of 12 moments of the radial intensity profiles, the algorithm performs well in discriminating between the above three categories of limb structures, with a misclassification rate of 7%. Pixels detected as belonging to a prominence are then used as starting point to reconstruct the whole prominence by morphological image processing techniques. It is planned that a catalogue of limb prominences identified in SOHO and STEREO data using this method will be made publicly available to the scientific community

    On the structure and evolution of a polar crown prominence/filament system

    Full text link
    Polar crown prominences are made of chromospheric plasma partially circling the Suns poles between 60 and 70 degree latitude. We aim to diagnose the 3D dynamics of a polar crown prominence using high cadence EUV images from the Solar Dynamics Observatory (SDO)/AIA at 304 and 171A and the Ahead spacecraft of the Solar Terrestrial Relations Observatory (STEREO-A)/EUVI at 195A. Using time series across specific structures we compare flows across the disk in 195A with the prominence dynamics seen on the limb. The densest prominence material forms vertical columns which are separated by many tens of Mm and connected by dynamic bridges of plasma that are clearly visible in 304/171A two-color images. We also observe intermittent but repetitious flows with velocity 15 km/s in the prominence that appear to be associated with EUV bright points on the solar disk. The boundary between the prominence and the overlying cavity appears as a sharp edge. We discuss the structure of the coronal cavity seen both above and around the prominence. SDO/HMI and GONG magnetograms are used to infer the underlying magnetic topology. The evolution and structure of the prominence with respect to the magnetic field seems to agree with the filament linkage model.Comment: 24 pages, 14 figures, Accepted for publication in Solar Physics Journal, Movies can be found at http://www2.mps.mpg.de/data/outgoing/panesar

    Magnetically Driven Warping, Precession and Resonances in Accretion Disks

    Get PDF
    The inner region of the accretion disk onto a rotating magnetized central star (neutron star, white dwarf or T Tauri star) is subjected to magnetic torques which induce warping and precession of the disk. The origin of these torques lies in the interaction between the (induced) surface current on the disk and the horizontal magnetic field (parallel to the disk) produced by the inclined magnetic dipole. Under quite general conditions, there exists a magnetic warping instability in which the magnetic torque drives the disk plane away from the equatorial plane of the star toward a state where the disk normal vector is perpendicular to the spin axis. Viscous stress tends to suppress the warping instability at large radii, but the magnetic torque always dominates as the disk approaches the magnetosphere boundary. The magnetic torque also drives the tilted inner disk into retrograde precession around the stellar spin axis. Moreover, resonant magnetic forcing on the disk can occur which may affect the dynamics of the disk. The magnetically driven warping instability and precession may be related to a number observational puzzles, including: (1) Spin evolution (torque reversal) of accreting X-ray pulsars; (2) Quasi-periodic oscillations in low-mass X-ray binaries; (3) Super-orbital periods in X-ray binaries; (4) Photometric period variations of T Tauri stars.Comment: 39 pages including 1 ps figure; Published version; ApJ, 524, 1030-1047 (1999

    Plasmoid-Induced-Reconnection and Fractal Reconnection

    Get PDF
    As a key to undertanding the basic mechanism for fast reconnection in solar flares, plasmoid-induced-reconnection and fractal reconnection are proposed and examined. We first briefly summarize recent solar observations that give us hints on the role of plasmoid (flux rope) ejections in flare energy release. We then discuss the plasmoid-induced-reconnection model, which is an extention of the classical two-ribbon-flare model which we refer to as the CSHKP model. An essential ingredient of the new model is the formation and ejection of a plasmoid which play an essential role in the storage of magnetic energy (by inhibiting reconnection) and the induction of a strong inflow into reconnection region. Using a simple analytical model, we show that the plasmoid ejection and acceleration are closely coupled with the reconnection process, leading to a nonlinear instability for the whole dynamics that determines the macroscopic reconnection rate uniquely. Next we show that the current sheet tends to have a fractal structure via the following process path: tearing, sheet thinning, Sweet- Parker sheet, secondary tearing, further sheet thinning... These processes occur repeatedly at smaller scales until a microscopic plasma scale (either the ion Larmor radius or the ion inertial length) is reached where anomalous resistivity or collisionless reconnection can occur. The current sheet eventually has a fractal structure with many plasmoids (magnetic islands) of different sizes. When these plasmoids are ejected out of the current sheets, fast reconnection occurs at various different scales in a highly time dependent manner. Finally, a scenario is presented for fast reconnection in the solar corona on the basis of above plasmoid-induced-reconnection in a fractal current sheet.Comment: 9 pages, 11 figures, with using eps.sty; Earth, Planets and Space in press; ps-file is also available at http://stesun8.stelab.nagoya-u.ac.jp/~tanuma/study/shibata2001

    How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs

    Full text link
    We intend to provide a comprehensive answer to the question on whether all Coronal Mass Ejections (CMEs) have flux rope structure. To achieve this, we present a synthesis of the LASCO CME observations over the last sixteen years, assisted by 3D MHD simulations of the breakout model, EUV and coronagraphic observations from STEREO and SDO, and statistics from a revised LASCO CME database. We argue that the bright loop often seen as the CME leading edge is the result of pileup at the boundary of the erupting flux rope irrespective of whether a cavity or, more generally, a 3-part CME can be identified. Based on our previous work on white light shock detection and supported by the MHD simulations, we identify a new type of morphology, the `two-front' morphology. It consists of a faint front followed by diffuse emission and the bright loop-like CME leading edge. We show that the faint front is caused by density compression at a wave (or possibly shock) front driven by the CME. We also present high-detailed multi-wavelength EUV observations that clarify the relative positioning of the prominence at the bottom of a coronal cavity with clear flux rope structure. Finally, we visually check the full LASCO CME database for flux rope structures. In the process, we classify the events into two clear flux rope classes (`3-part', `Loop'), jets and outflows (no clear structure). We find that at least 40% of the observed CMEs have clear flux rope structures. We propose a new definition for flux rope CMEs (FR-CMEs) as a coherent magnetic, twist-carrying coronal structure with angular width of at least 40 deg and able to reach beyond 10 Rsun which erupts on a time scale of a few minutes to several hours. We conclude that flux ropes are a common occurrence in CMEs and pose a challenge for future studies to identify CMEs that are clearly not FR-CMEs.Comment: 26 pages, 9 figs, to be published in Solar Physics Topical Issue "Flux Rope Structure of CMEs

    Menus for Feeding Black Holes

    Full text link
    Black holes are the ultimate prisons of the Universe, regions of spacetime where the enormous gravity prohibits matter or even light to escape to infinity. Yet, matter falling toward the black holes may shine spectacularly, generating the strongest source of radiation. These sources provide us with astrophysical laboratories of extreme physical conditions that cannot be realized on Earth. This chapter offers a review of the basic menus for feeding matter onto black holes and discusses their observational implications.Comment: 27 pages. Accepted for publication in Space Science Reviews. Also to appear in hard cover in the Space Sciences Series of ISSI "The Physics of Accretion onto Black Holes" (Springer Publisher
    corecore