4,696 research outputs found

    N-fold Supersymmetry in Quantum Mechanics - Analyses of Particular Models -

    Get PDF
    We investigate particular models which can be N-fold supersymmetric at specific values of a parameter in the Hamiltonians. The models to be investigated are a periodic potential and a parity-symmetric sextic triple-well potential. Through the quantitative analyses on the non-perturbative contributions to the spectra by the use of the valley method, we show how the characteristic features of N-fold supersymmetry which have been previously reported by the authors can be observed. We also clarify the difference between quasi-exactly solvable and quasi-perturbatively solvable case in view of the dynamical property, that is, dynamical N-fold supersymmetry breaking.Comment: 32 pages, 10 figures, REVTeX

    Loop Variables and Gauge Invariant Interactions - I

    Get PDF
    We describe a method of writing down interacting equations for all the modes of the bosonic open string. It is a generalization of the loop variable approach that was used earlier for the free, and lowest order interacting cases. The generalization involves, as before, the introduction of a parameter to label the different strings involved in an interaction. The interacting string has thus becomes a ``band'' of finite width. The interaction equations expressed in terms of loop variables, has a simple invariance that is exact even off shell. A consistent definition of space-time fields requires the fields to be functions of all the infinite number of gauge coordinates (in addition to space time coordinates). The theory is formulated in one higher dimension, where the modes appear massless. The dimensional reduction that is needed to make contact with string theory (which has been discussed earlier for the free case) is not discussed here.Comment: 40 pages, Latex. Revised version: some typos corrected. Final version to appear in Int. J. of Mod. Phys.

    Pairing correlations in nuclei on the neutron-drip line

    Get PDF
    Paring correlations in weakly bound nuclei on the edge of neutron drip line is studied by using a three-body model. A density-dependent contact interaction is employed to calculate the ground state of halo nuclei 6^{6}He and 11^{11}Li, as well as a skin nucleus 24^{24}O. Dipole excitations in these nuclei are also studied within the same model. We point out that the di-neutron type correlation plays a dominant role in the halo nuclei 6^{6}He and 11^{11}Li having the coupled spin of the two neutrons SS=0, while the correlation similar to the BCS type is important in 24^{24}O. Contributions of the spin SS=1 and S=0 configurations are separately discussed in the low energy dipole excitations.Comment: 6 pages, 12 eps figure

    Tenth-Order QED Contribution to the Electron g-2 and an Improved Value of the Fine Structure Constant

    Full text link
    This paper presents the complete QED contribution to the electron g-2 up to the tenth order. With the help of the automatic code generator, we have evaluated all 12672 diagrams of the tenth-order diagrams and obtained 9.16 (58)(\alpha/\pi)^5. We have also improved the eighth-order contribution obtaining -1.9097(20)(\alpha/\pi)^4, which includes the mass-dependent contributions. These results lead to a_e(theory)=1 159 652 181.78 (77) \times 10^{-12}. The improved value of the fine-structure constant \alpha^{-1} = 137.035 999 174 (35) [0.25 ppb] is also derived from the theory and measurement of a_e.Comment: 4 pages, 2 figures. Some numbers are slightly change

    Darboux-Egoroff Metrics, Rational Landau-Ginzburg Potentials and the Painleve VI Equation

    Full text link
    We present a class of three-dimensional integrable structures associated with the Darboux-Egoroff metric and classical Euler equations of free rotations of a rigid body. They are obtained as canonical structures of rational Landau-Ginzburg potentials and provide solutions to the Painleve VI equation.Comment: 20 page

    Testing new physics with the electron g-2

    Get PDF
    We argue that the anomalous magnetic moment of the electron (a_e) can be used to probe new physics. We show that the present bound on new-physics contributions to a_e is 8*10^-13, but the sensitivity can be improved by about an order of magnitude with new measurements of a_e and more refined determinations of alpha in atomic-physics experiments. Tests on new-physics effects in a_e can play a crucial role in the interpretation of the observed discrepancy in the anomalous magnetic moment of the muon (a_mu). In a large class of models, new contributions to magnetic moments scale with the square of lepton masses and thus the anomaly in a_mu suggests a new-physics effect in a_e of (0.7 +- 0.2)*10^-13. We also present examples of new-physics theories in which this scaling is violated and larger effects in a_e are expected. In such models the value of a_e is correlated with specific predictions for processes with violation of lepton number or lepton universality, and with the electric dipole moment of the electron.Comment: 34 pages, 7 figures. Minor changes and references adde

    Logarithmic deformations of the rational superpotential/Landau-Ginzburg construction of solutions of the WDVV equations

    Get PDF
    The superpotential in the Landau-Ginzburg construction of solutions to the Witten-Dijkgraaf-Verlinde-Verlinde (or WDVV) equations is modified to include logarithmic terms. This results in deformations - quadratic in the deformation parameters- of the normal prepotential solutions of the WDVV equations. Such solutions satisfy various pseudo-quasi-homogeneity conditions, on assigning a notional weight to the deformation parameters. These solutions originate in the so-called `water-bag' reductions of the dispersionless KP hierarchy. This construction includes, as a special case, deformations which are polynomial in the flat coordinates, resulting in a new class of polynomial solutions of the WDVV equations

    A simple construction of fermion measure term in U(1) chiral lattice gauge theories with exact gauge invariance

    Full text link
    In the gauge invariant formulation of U(1) chiral lattice gauge theories based on the Ginsparg-Wilson relation, the gauge field dependence of the fermion measure is determined through the so-called measure term. We derive a closed formula of the measure term on the finite volume lattice. The Wilson line degrees of freedom (torons) of the link field are treated separately to take care of the global integrability. The local counter term is explicitly constructed with the local current associated with the cohomologically trivial part of the gauge anomaly in a finite volume. The resulted formula is very close to the known expression of the measure term in the infinite volume with a single parameter integration, and would be useful in practical implementations.Comment: 25 pages, uses JHEP3.cls, the version to appear in JHE
    corecore