15 research outputs found
Human Chorionic Gonadotropin Increases β-Cleavage of Amyloid Precursor Protein in SH-SY5Y Cells
Single Cell Fluorescence Ratio Image Analysis for Studying ESCRT Function in Receptor Trafficking
Structure-guided combination therapy to potently improve the function of mutant CFTRs
Available drugs are unable to effectively rescue the folding defects in vitro and ameliorate the clinical-phenotype of cystic fibrosis (CF), caused by deletion of F508 (ΔF508 or F508del) and some point mutations in the CF transmembrane conductance regulator (CFTR), a plasma membrane (PM) anion channel. To overcome the corrector efficacy ceiling, here we show that compounds targeting distinct structural defects of CFTR can synergistically rescue mutants expression and function at the PM. High throughput cell-based screens and mechanistic analysis identified three small-molecule series that target defects at the nucleotide binding domain (NBD1), NBD2 and their membrane spanning domains (MSDs) interfaces. While individually these compounds marginally improve ΔF508-CFTR folding efficiency, function, and stability, their combinations lead to ~50-100% of wild type-level correction in immortalized and primary human airway epithelia, and in mouse nasal epithelia. Likewise, corrector combinations were effective for rare missense mutations in various CFTR domains, probably acting via structural allostery, suggesting a mechanistic framework for their broad application
The Cullin 4A/B-DDB1-Cereblon E3 Ubiquitin Ligase Complex Mediates the Degradation of CLC-1 Chloride Channels
Voltage-gated CLC-1 chloride channels play a critical role in controlling the membrane excitability of skeletal muscles. Mutations in human CLC-1 channels have been linked to the hereditary muscle disorder myotonia congenita. We have previously demonstrated that disease-associated CLC-1 A531V mutant protein may fail to pass the endoplasmic reticulum quality control system and display enhanced protein degradation as well as defective membrane trafficking. Currently the molecular basis of protein degradation for CLC-1 channels is virtually unknown. Here we aim to identify the E3 ubiquitin ligase of CLC-1 channels. The protein abundance of CLC-1 was notably enhanced in the presence of MLN4924, a specific inhibitor of cullin-RING E3 ligases. Subsequent investigation with dominant-negative constructs against specific subtypes of cullin-RING E3 ligases suggested that CLC-1 seemed to serve as the substrate for cullin 4A (CUL4A) and 4B (CUL4B). Biochemical examinations further indicated that CUL4A/B, damage-specific DNA binding protein 1 (DDB1), and cereblon (CRBN) appeared to co-exist in the same protein complex with CLC-1. Moreover, suppression of CUL4A/B E3 ligase activity significantly enhanced the functional expression of the A531V mutant. Our data are consistent with the idea that the CUL4A/B-DDB1-CRBN complex catalyses the polyubiquitination and thus controls the degradation of CLC-1 channels
