95 research outputs found

    Molecular Cloning and Expression Analysis of fushi tarazu Factor 1 in the Brain of Air-Breathing Catfish, Clarias gariepinus

    Get PDF
    BACKGROUND: Fushi tarazu factor 1 (FTZ-F1) encodes an orphan nuclear receptor belonging to the nuclear receptor family 5A (NR5A) which includes adrenal 4-binding protein or steroidogenic factor-1 (Ad4BP/SF-1) and liver receptor homologue 1 (LRH-1) and plays a pivotal role in the regulation of aromatases. METHODOLOGY/PRINCIPAL FINDINGS: Present study was aimed to understand the importance of FTZ-F1 in relation to brain aromatase (cyp19a1b) during development, recrudescence and after human chorionic gonadotropin (hCG) induction. Initially, we cloned FTZ-F1 from the brain of air-breathing catfish, Clarias gariepinus through degenerate primer RT-PCR and RACE. Its sequence analysis revealed high homology with other NR5A1 group members Ad4BP/SF-1 and LRH-1, and also analogous to the spatial expression pattern of the latter. In order to draw functional correlation of cyp19a1b and FTZ-F1, we analyzed the expression pattern of the latter in brain during gonadal ontogeny, which revealed early expression during gonadal differentiation. The tissue distribution both at transcript and protein levels revealed its prominent expression in brain along with liver, kidney and testis. The expression pattern of brain FTZ-F1 during reproductive cycle and after hCG induction, in vivo was analogous to that of cyp19a1b shown in our earlier study indicating its involvement in recrudescence. CONCLUSIONS/SIGNIFICANCE: Based on our previous results on cyp19a1b and the present data, it is plausible to implicate potential roles for brain FTZ-F1 in ovarian differentiation and recrudescence process probably through regulation of cyp19a1b in teleosts. Nevertheless, these interactions would require primary coordinated response from ovarian aromatase and its related transcription factors

    Developing Standard Treatment Workflows—way to universal healthcare in India

    Get PDF
    Primary healthcare caters to nearly 70% of the population in India and provides treatment for approximately 80–90% of common conditions. To achieve universal health coverage (UHC), the Indian healthcare system is gearing up by initiating several schemes such as National Health Protection Scheme, Ayushman Bharat, Nutrition Supplementation Schemes, and Inderdhanush Schemes. The healthcare delivery system is facing challenges such as irrational use of medicines, over- and under-diagnosis, high out-of-pocket expenditure, lack of targeted attention to preventive and promotive health services, and poor referral mechanisms. Healthcare providers are unable to keep pace with the volume of growing new scientific evidence and rising healthcare costs as the literature is not published at the same pace. In addition, there is a lack of common standard treatment guidelines, workflows, and reference manuals from the Government of India. Indian Council of Medical Research in collaboration with the National Health Authority, Govt. of India, and the WHO India country office has developed Standard Treatment Workflows (STWs) with the objective to be utilized at various levels of healthcare starting from primary to tertiary level care. A systematic approach was adopted to formulate the STWs. An advisory committee was constituted for planning and oversight of the process. Specialty experts' group for each specialty comprised of clinicians working at government and private medical colleges and hospitals. The expert groups prioritized the topics through extensive literature searches and meeting with different stakeholders. Then, the contents of each STW were finalized in the form of single-pager infographics. These STWs were further reviewed by an editorial committee before publication. Presently, 125 STWs pertaining to 23 specialties have been developed. It needs to be ensured that STWs are implemented effectively at all levels and ensure quality healthcare at an affordable cost as part of UHC

    Identification of 86 kDa protein as methionine rich hexamerin in the rice moth, Corcyra cephalonica

    No full text
    We cloned the complete cDNA of methionine rich hexamerin from rice moth, Corcyra cephalonica using RACE strategy. The amplicon size was 2.5 kb with an ORF of 2.31 kb. The cDNA clone showed high percentage of methionine (4.8%), which is consistent with the previously reported sequences in other insects. The Southern and Northern analysis carried out showed that methionine rich hexamerin in rice moth is a single copy gene. Multiple alignment analysis of amino acid sequence revealed that the cDNA clone is most similar to Plodia interpunctella hexamerin storage protein (74% identity). The calculated isoelectric point is 9.2. The deduced amino acid sequence corresponded to 86 kDa subunit of hexamerin protein in rice moth. The 86 kDa protein (methionine rich subunit) was purified and polyclonal antibodies were raised against the subunit to check the specificity of the purified subunit. The developmental profile of 86 kDa subunit during the larval stages both in the fat body and haemolymph show that it is present at a higher concentration during the LLI (late-last instar) larval stage compared to the previous stages. The present work carried out shows that the methionine rich hexamerin cloned is the 86 kDa subunit of hexamerin which was identified previously by our group in rice moth, C. cephalonica

    Muscle group dependent responses to stimuli in a grasshopper model for tonic immobility

    Get PDF
    Summary Tonic Immobility (TI) is a prolonged immobile condition exhibited by a variety of animals when exposed to certain stimuli, and is thought to be associated with a specific state of arousal. In our study, we characterize this state by using the reliably inducible TI state of the grasshopper (Hieroglyphus banian) and by monitoring abdominal pulsations and body movements in response to visual and auditory stimuli. These pulsations are present during the TI and ‘awake’, standing states, but not in the CO2 anesthetized state. In response to the stimuli, animals exhibited a suppression in pulsation and a startle response. The suppression of pulsation lasted longer than the duration of stimulus application. During TI, the suppression of pulsation does not habituate over time, whereas the startle response does. In response to the translating visual stimulus, the pulsations are suppressed at a certain phase independent of the time of stimulus application. Thus, we describe TI in Hieroglyphus banian as a state more similar to an ‘awake’ state than to an anesthetized state. During TI, the circuitry to the muscle outputs controlling the abdomen pulsation and the startle response are, at least in some part, different. The central pattern generators that maintain the abdomen pulsation receive inputs from visual and auditory pathways
    corecore