5,877 research outputs found
Refactoring Legacy JavaScript Code to Use Classes: The Good, The Bad and The Ugly
JavaScript systems are becoming increasingly complex and large. To tackle the
challenges involved in implementing these systems, the language is evolving to
include several constructions for programming- in-the-large. For example,
although the language is prototype-based, the latest JavaScript standard, named
ECMAScript 6 (ES6), provides native support for implementing classes. Even
though most modern web browsers support ES6, only a very few applications use
the class syntax. In this paper, we analyze the process of migrating structures
that emulate classes in legacy JavaScript code to adopt the new syntax for
classes introduced by ES6. We apply a set of migration rules on eight legacy
JavaScript systems. In our study, we document: (a) cases that are
straightforward to migrate (the good parts); (b) cases that require manual and
ad-hoc migration (the bad parts); and (c) cases that cannot be migrated due to
limitations and restrictions of ES6 (the ugly parts). Six out of eight systems
(75%) contain instances of bad and/or ugly cases. We also collect the
perceptions of JavaScript developers about migrating their code to use the new
syntax for classes.Comment: Paper accepted at 16th International Conference on Software Reuse
(ICSR), 2017; 16 page
Dynamics of topological defects in a spiral: a scenario for the spin-glass phase of cuprates
We propose that the dissipative dynamics of topological defects in a spiral
state is responsible for the transport properties in the spin-glass phase of
cuprates. Using the collective-coordinate method, we show that topological
defects are coupled to a bath of magnetic excitations. By integrating out the
bath degrees of freedom, we find that the dynamical properties of the
topological defects are dissipative. The calculated damping matrix is related
to the in-plane resistivity, which exhibits an anisotropy and linear
temperature dependence in agreement with experimental data.Comment: 4 pages, as publishe
Comment on "Spin relaxation in quantum Hall systems"
W. Apel and Yu.A. Bychkov have recently considered the spin relaxation in a
2D quantum Hall system for the filling factor close to unity [PRL v.82, 3324
(1999)]. The authors considered only one spin flip mechanism (direct
spin-phonon coupling) among several possible spin-orbit related ones and came
to the conclusion that the spin relaxation time due to this mechanism is quite
short: around s at B=10 T (for GaAs). This time is much shorter than
the typical time ( s) obtained earlier by D. Frenkel while considering
the spin relaxation of 2D electrons in a quantizing magnetic field without the
Coulomb interaction and for the same spin-phonon coupling. I show that the
authors' conclusion about the value of the spin-flip time is wrong and have
deduced the correct time which is by several orders of magnitude longer. I also
discuss the admixture mechanism of the spin-orbit interaction.Comment: 1 pag
The Heisenberg antiferromagnet on a triangular lattice: topological excitations
We study the topological defects in the classical Heisenberg antiferromagnet
in two dimensions on a triangular lattice (HAFT). While the topological
analysis of the order parameter space indicates that the defects are of
type, consideration of the energy leads us to a description of the low--energy
stationary points of the action in terms of vortices, as in the planar XY
model. Starting with the continuum description of the HAFT, we show
analytically that its partition function can be reduced to that of a
2--dimensional Coulomb gas with logarithmic interaction. Thus, at low
temperatures, the correlation length is determined by the spinwaves, while at
higher temperatures we expect a crossover to a Kosterlitz--Thouless type
behaviour. The results of recent Monte Carlo calculations of the correlation
length are consistent with such a crossover.Comment: 9 pages, revtex, preprint: ITP-UH 03/9
Heat conduction and Wiedemann-Franz Law in disordered Luttinger Liquids
We consider heat transport in a Luttinger liquid (LL) with weak disorder and
study the Lorenz number for this system. We start at a high- regime, and
calculate both the electrical and thermal conductivities using a memory
function approach. The resulting Lorenz number is independent of but
depends explicitly on the LL exponents. Lowering , however, allows for a
renormalization of the LL exponents from their bare values by disorder, causing
a violation of the Wiedemann-Franz law. Finally, we extend the discussion to
quantum wire systems and study the wire size dependence of the Lorenz number.Comment: 4 pages, 1 eps figure; Changes made to address Referees' comment
Monte Carlo Simulation of the Heisenberg Antiferromagnet on a Triangular Lattice: Topological Excitations
We have simulated the classical Heisenberg antiferromagnet on a triangular
lattice using a local Monte Carlo algorithm. The behavior of the correlation
length , the susceptibility at the ordering wavevector , and
the spin stiffness clearly reflects the existence of two temperature
regimes -- a high temperature regime , in which the disordering
effect of vortices is dominant, and a low temperature regime ,
where correlations are controlled by small amplitude spin fluctuations. As has
previously been shown, in the last regime, the behavior of the above quantities
agrees well with the predictions of a renormalization group treatment of the
appropriate nonlinear sigma model. For , a satisfactory fit of the
data is achieved, if the temperature dependence of and is
assumed to be of the form predicted by the Kosterlitz--Thouless theory.
Surprisingly, the crossover between the two regimes appears to happen in a very
narrow temperature interval around .Comment: 13 pages, 8 Postscript figure
The muonic longitudinal shower profiles at production
In this paper the longitudinal profile of muon production along the shower
axis is studied. The characteristics of this distribution is investigated for
different primary masses, zenith angles, primary energies, and different high
energy hadronic models. It is found that the shape of this distribution
displays universal features similarly to what is known for the electromagnetic
profile. The relation between the muon production distribution and the
longitudinal electromagnetic evolution is also discussed
Radiolarian faunal characteristics in Oligocene of the Kerguelen Plateau, Leg 183, Site 1138
Three sites from Ocean Drilling Program (ODP) Leg 183 (Kerguelen Plateau) have been analyzed to document faunal change in high-latitude radiolarians and to compare the faunal change to Eocene-Oligocene climatic deterioration. Radiolarians are not preserved in Eocene sediments. In Oligocene sediments, radiolarian preservation improves in a stepwise manner toward the Miocene. A total of 115 species were found in lower Oligocene samples from Site 1138; all are documented herein. Radiolarian preservation is presumably linked to productivity triggered by climatic cooling during the early Oligocene. Similar patterns of improving preservation through the Eocene/Oligocene boundary are documented from several Deep Sea Drilling Project and ODP sites in the Southern Ocean, indicating a general pattern. In contrast to the Southern Kerguelen Plateau, however, proxies for productivity are more divergent at Site 1138 (Central Kerguelen Plateau). Whereas carbonate dissolution, as indicated by poor preservation of foraminifers and common hiatuses, is very pronounced in the upper Eocene-lowermost Oligocene, the quality of radiolarian and diatom preservation does not significantly increase until the uppermost lower Oligocene. Multiple measures of radiolarian diversity in the Oligocene from Site 1138 closely parallel radiolarian preservation, indicating that preserved radiolarian diversity is controlled by productivity
- …
