1,170 research outputs found
Critical behavior at superconductor-insulator phase transitions near one dimension
I argue that the system of interacting bosons at zero temperature and in
random external potential possesses a simple critical point which describes the
proliferation of disorder-induced topological defects in the superfluid ground
state, and which is located at weak disorder close to and above one dimension.
This makes it possible to address the critical behavior at the superfluid-Bose
glass transition in dirty boson systems by expanding around the lower critical
dimension d=1. Within the formulated renormalization procedure near d=1 the
dynamical critical exponent is obtained exactly and the correlation length
exponent is calculated as a Laurent series in the parameter \sqrt{\epsilon},
with \epsilon=d-1: z=d, \nu=1/\sqrt{3\epsilon} for the short range, and z=1,
\nu=\sqrt{2/3\epsilon}, for the long-range Coulomb interaction between bosons.
The identified critical point should be stable against the residual
perturbations in the effective action for the superfluid, at least in
dimensions 1\leq d \leq 2, for both short-range and Coulomb interactions. For
the superfluid-Mott insulator transition in the system in a periodic potential
and at a commensurate density of bosons I find \nu=(1/2\sqrt{\epsilon})+
1/4+O(\sqrt{\epsilon}), which yields a result reasonably close to the known XY
critical exponent in d=2+1. The critical behavior of the superfluid density,
phonon velocity and the compressibility in the system with the short-range
interactions is discussed.Comment: 23 pages, 1 Postscript figure, LaTe
Coevolution of variability models and related software artifacts
Variant-rich software systems offer a large degree of customization, allowing users to configure the target system according to their preferences and needs. Facing high degrees of variability, these systems often employ variability models to explicitly capture user-configurable features (e.g., systems options) and the constraints they impose. The explicit representation of features allows them to be referenced in different variation points across different artifacts, enabling the latter to vary according to specific feature selections. In such settings, the evolution of variability models interplays with the evolution of related artifacts, requiring the two to evolve together, or coevolve. Interestingly, little is known about how such coevolution occurs in real-world systems, as existing research has focused mostly on variability evolution as it happens in variability models only. Furthermore, existing techniques supporting variability evolution are usually validated with randomly-generated variability models or evolution scenarios that do not stem from practice. As the community lacks a deep understanding of how variability evolution occurs in real-world systems and how it relates to the evolution of different kinds of software artifacts, it is not surprising that industry reports existing tools and solutions ineffective, as they do not handle the complexity found in practice. Attempting to mitigate this overall lack of knowledge and to support tool builders with insights on how variability models coevolve with other artifact types, we study a large and complex real-world variant-rich software system: the Linux kernel. Specifically, we extract variability-coevolution patterns capturing changes in the variability model of the Linux kernel with subsequent changes in Makefiles and C source code. From the analysis of the patterns, we report on findings concerning evolution principles found in the kernel, and we reveal deficiencies in existing tools and theory when handling changes captured by our patterns
Relationship between solidification microstructure and hot cracking susceptibility for continuous casting of low-carbon and high-strength low-alloyed steels: A phase-field study
© The Minerals, Metals & Materials Society and ASM International 2013Hot cracking is one of the major defects in continuous casting of steels, frequently limiting the productivity. To understand the factors leading to this defect, microstructure formation is simulated for a low-carbon and two high-strength low-alloyed steels. 2D simulation of the initial stage of solidification is performed in a moving slice of the slab using proprietary multiphase-field software and taking into account all elements which are expected to have a relevant effect on the mechanical properties and structure formation during solidification. To account for the correct thermodynamic and kinetic properties of the multicomponent alloy grades, the simulation software is online coupled to commercial thermodynamic and mobility databases. A moving-frame boundary condition allows traveling through the entire solidification history starting from the slab surface, and tracking the morphology changes during growth of the shell. From the simulation results, significant microstructure differences between the steel grades are quantitatively evaluated and correlated with their hot cracking behavior according to the Rappaz-Drezet-Gremaud (RDG) hot cracking criterion. The possible role of the microalloying elements in hot cracking, in particular of traces of Ti, is analyzed. With the assumption that TiN precipitates trigger coalescence of the primary dendrites, quantitative evaluation of the critical strain rates leads to a full agreement with the observed hot cracking behavior. © 2013 The Minerals, Metals & Materials Society and ASM International
Hermeneutics and Nature
This paper contributes to the on-going research into the ways in which the humanities transformed the natural sciences in the late Eighteenth and early Nineteenth Centuries. By investigating the relationship between hermeneutics -- as developed by Herder -- and natural history, it shows how the methods used for the study of literary and artistic works played a crucial role in the emergence of key natural-scientific fields, including geography and ecology
Spin dynamics in semiconductors
This article reviews the current status of spin dynamics in semiconductors
which has achieved a lot of progress in the past years due to the fast growing
field of semiconductor spintronics. The primary focus is the theoretical and
experimental developments of spin relaxation and dephasing in both spin
precession in time domain and spin diffusion and transport in spacial domain. A
fully microscopic many-body investigation on spin dynamics based on the kinetic
spin Bloch equation approach is reviewed comprehensively.Comment: a review article with 193 pages and 1103 references. To be published
in Physics Reports
Redox activities and ROS, NO and phenylpropanoids production by axenically cultured intact olive seedling roots after interaction with a mycorrhizal or a pathogenic fungus
Las raíces de las plántulas de olivo, en cultivo axénico, fueron colocadas alternativamente en contacto con Rhizophagus irregulares (micorrícicos) o con hongos Verticillim dahliae (patógenos). También se incluyeron tratamientos MeJA. Las raíces intactas (generación de anión superóxido, superóxido dismutasa y actividades de peroxidasa) se midieron en las actividades in vivo del apoplasto. Todos nuestros resultados mostraron que las actividades redox apoplásticas de raíces de las plántulas intactas en contacto con el hongo micorriza compatible fueron claramente atenuados en comparación con el hongo patógeno o tratado con MeJA, incluso en las primeras etapas usadas en el tratamiento. Los fenoles totales, flavonoides y glucósidos fenilpropanoides, también fueron cuantificados. Las raíces en contacto con el hongo micorriza no mejoraron la biosíntesis de compuestos fenólicos con respecto a los controles, mientras que los de contacto con el patógeno mejoraron de forma significativa la biosíntesis de todas las fracciones fenólicas medidas. Las especies reactivas del oxígeno y la acumulación de óxido nítrico en las raíces fueron examinadas por microscopía de fluorescencia. Todos ellas presentaron una acumulación mucho mayor en las raíces en contacto con el patógeno que con el hongo micorriza. En total, estos resultados indican que las raíces de las plántulas intactas de olivo, claramente diferenciadas entre micorrizas y hongos patógenos, atenuan las reacciones de defensa contra la primera para facilitar su creación, mientras que induce una reacción de defensa fuerte y sostenida contra el segundo. Ambas especies reactivas de oxígeno y nitrógeno parecían estar involucrados en estas respuestas desde los primeros momentos de contacto. Sin embargo, se necesitan más investigaciones para aclarar la diafonía propuesta entre ellos y sus respectivas funciones en estas respuestas ya que las imágenes de fluorescencia de las raíces revelaron que las especies reactivas del oxígeno se acumulan principalmente en el apoplasto (congruente con las actividades redox medidas en este compartimento), mientras el óxido nítrico se almacena principalmente en el citosol.Roots of intact olive seedlings, axenically cultured, were alternatively placed in contact with Rhizophagus irregularis (mycorrhizal) or Verticillim dahliae (pathogenic) fungi. MeJA treatments were also included. In vivo redox activities in the apoplast of the intact roots (anion superoxide generation, superoxide dismutase and peroxidase activities) were measured. All our results showed that apoplastic redox activities of intact seedling roots in contact with the compatible mycorrhizal fungus were clearly attenuated in comparison with the pathogenic fungus or treated with MeJA, even at the early stages of treatment used. Total phenolics, flavonoids and phenylpropanoid glycosides were also quantified. Roots in contact with the mycorrhizal fungus did not enhance the biosynthesis of phenolic compounds with respect to controls, while those in contact with the pathogenic one significantly enhanced the biosynthesis of all phenolic fractions measured. Reactive oxygen species and nitric oxid accumulation in roots were examined by fluorescence microscopy. All of them presented much higher accumulation in roots in contact with the pathogenic than with the mycorrhizal fungus. Altogether these results indicate that intact olive seedling roots clearly differentiated between mycorrhizal and pathogenic fungi, attenuating defense reactions against the first to facilitate its establishment, while inducing a strong and sustained defense reaction against the second. Both reactive oxygen and nitrogen species seemed to be involved in these responses from the first moments of contact. However, further investigations are required to clarify the proposed crosstalk between them and their respective roles in these responses since fluorescence images of roots revealed that reactive oxygen species were mainly accumulated in the apoplast (congruently with the measured redox activities in this compartment) while nitric oxid was mainly stored in the cytosol.-- Ministerio de Ciencia e Innovación. Proyecto CGL2009-12406
-- Junta de Extremadura. Proyecto PRI09A023peerReviewe
Exploiting members of the BAHD acyltransferase family to synthesize multiple hydroxycinnamate and benzoate conjugates in yeast
BACKGROUND: BAHD acyltransferases, named after the first four biochemically characterized enzymes of the group, are plant-specific enzymes that catalyze the transfer of coenzyme A-activated donors onto various acceptor molecules. They are responsible for the synthesis in plants of a myriad of secondary metabolites, some of which are beneficial for humans either as therapeutics or as specialty chemicals such as flavors and fragrances. The production of pharmaceutical, nutraceutical and commodity chemicals using engineered microbes is an alternative, green route to energy-intensive chemical syntheses that consume petroleum-based precursors. However, identification of appropriate enzymes and validation of their functional expression in heterologous hosts is a prerequisite for the design and implementation of metabolic pathways in microbes for the synthesis of such target chemicals. RESULTS: For the synthesis of valuable metabolites in the yeast Saccharomyces cerevisiae, we selected BAHD acyltransferases based on their preferred donor and acceptor substrates. In particular, BAHDs that use hydroxycinnamoyl-CoAs and/or benzoyl-CoA as donors were targeted because a large number of molecules beneficial to humans belong to this family of hydroxycinnamate and benzoate conjugates. The selected BAHD coding sequences were synthesized and cloned individually on a vector containing the Arabidopsis gene At4CL5, which encodes a promiscuous 4-coumarate:CoA ligase active on hydroxycinnamates and benzoates. The various S. cerevisiae strains obtained for co-expression of At4CL5 with the different BAHDs effectively produced a wide array of valuable hydroxycinnamate and benzoate conjugates upon addition of adequate combinations of donors and acceptor molecules. In particular, we report here for the first time the production in yeast of rosmarinic acid and its derivatives, quinate hydroxycinnamate esters such as chlorogenic acid, and glycerol hydroxycinnamate esters. Similarly, we achieved for the first time the microbial production of polyamine hydroxycinnamate amides; monolignol, malate and fatty alcohol hydroxycinnamate esters; tropane alkaloids; and benzoate/caffeate alcohol esters. In some instances, the additional expression of Flavobacterium johnsoniae tyrosine ammonia-lyase (FjTAL) allowed the synthesis of p-coumarate conjugates and eliminated the need to supplement the culture media with 4-hydroxycinnamate. CONCLUSION: We demonstrate in this study the effectiveness of expressing members of the plant BAHD acyltransferase family in yeast for the synthesis of numerous valuable hydroxycinnamate and benzoate conjugates
Current European Labyrinthula zosterae Are Not Virulent and Modulate Seagrass (Zostera marina) Defense Gene Expression
Pro- and eukaryotic microbes associated with multi-cellular organisms are receiving increasing attention as a driving factor in ecosystems. Endophytes in plants can change host performance by altering nutrient uptake, secondary metabolite production or defense mechanisms. Recent studies detected widespread prevalence of Labyrinthula zosterae in European Zostera marina meadows, a protist that allegedly caused a massive amphi-Atlantic seagrass die-off event in the 1930's, while showing only limited virulence today. As a limiting factor for pathogenicity, we investigated genotype×genotype interactions of host and pathogen from different regions (10–100 km-scale) through reciprocal infection. Although the endophyte rapidly infected Z. marina, we found little evidence that Z. marina was negatively impacted by L. zosterae. Instead Z. marina showed enhanced leaf growth and kept endophyte abundance low. Moreover, we found almost no interaction of protist×eelgrass-origin on different parameters of L. zosterae virulence/Z. marina performance, and also no increase in mortality after experimental infection. In a target gene approach, we identified a significant down-regulation in the expression of 6/11 genes from the defense cascade of Z. marina after real-time quantitative PCR, revealing strong immune modulation of the host's defense by a potential parasite for the first time in a marine plant. Nevertheless, one gene involved in phenol synthesis was strongly up-regulated, indicating that Z. marina plants were probably able to control the level of infection. There was no change in expression in a general stress indicator gene (HSP70). Mean L. zosterae abundances decreased below 10% after 16 days of experimental runtime. We conclude that under non-stress conditions L. zosterae infection in the study region is not associated with substantial virulence
- …
