91 research outputs found
Einsatz eines Nitrifikationsinhibitors (PIADIN®) bei Gülleapplikation nach dem Strip-Till-Prinzip: Laborversuch zum Effekt auf die NO3--Bildung und N2O-Freisetzung
Balancing the immune response in the brain: IL-10 and its regulation
Background: The inflammatory response is critical to fight insults, such as pathogen invasion or tissue damage, but if not resolved often becomes detrimental to the host. A growing body of evidence places non-resolved inflammation at the core of various pathologies, from cancer to neurodegenerative diseases. It is therefore not surprising that the immune system has evolved several regulatory mechanisms to achieve maximum protection in the absence of pathology.
Main body: The production of the anti-inflammatory cytokine interleukin (IL)-10 is one of the most important mechanisms evolved by many immune cells to counteract damage driven by excessive inflammation. Innate immune cells of the central nervous system, notably microglia, are no exception and produce IL-10 downstream of pattern recognition receptors activation. However, whereas the molecular mechanisms regulating IL-10 expression by innate and acquired immune cells of the periphery have been extensively addressed, our knowledge on the modulation of IL-10 expression by central nervous cells is much scattered. This review addresses the current understanding on the molecular mechanisms regulating IL-10 expression by innate immune cells of the brain and the implications of IL-10 modulation in neurodegenerative disorders.
Conclusion: The regulation of IL-10 production by central nervous cells remains a challenging field. Answering the many remaining outstanding questions will contribute to the design of targeted approaches aiming at controlling deleterious inflammation in the brain.We acknowledge the Portuguese Foundation for Science and Technology (FCT) for providing a PhD grant to DLS (SFRH/BD/88081/2012) and a post-doctoral fellowship to SR (SFRH/BPD/72710/2010). DS, AGC and SR were funded by FEDER through the Competitiveness Factors Operational Programme (COMPETE) and National Funds through FCT under the scope of the project POCI-01-0145-FEDER007038; and by the project NORTE-01-0145-FEDER-000013, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The MS lab was financed by Fundo Europeu de Desenvolvimento Regional (FEDER) funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT in the framework of the project “Institute for Research and Innovation in Health Sciences ” (POCI-01-0145-FEDER-007274). MS is a FCT Associate Investigator. The funding body had no role in the design of the study and collection, analysis, and interpretation of the data and in writing the manuscript
Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component.
Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurode- generative disorders are very complicated and multifacto- rial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very di cult to be interpretated and often useless. Mouse models could be condiderated a ‘pathway models’, rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high eld Magnetic resonance, Optical Imaging scanners and of highly speci c contrast agents. Behavioral test are useful tool to characterize di erent ani- mal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the di erent neurodegenerative disorders. Aim
of this review is to focus on the di erent existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases
Supporting Information for A disease-associated XPA allele interferes with TFIIH binding and primarily affects transcription-coupled nucleotide excision repair
Supporting Text: Extended Methods
Figures S1 to S6
Tables S1 to S4
SI References (16)
Other supporting materials for this manuscript include the following:
Datasets / spreadsheet S1Peer reviewe
Increased pro-inflammatory cytokines, glial activation and oxidative stress in the hippocampus after short-term bilateral adrenalectomy
Untersuchungen über den Phosphorsäuregehalt der Spinalflüssigkeit unter pathologischen Verhältnissen: Zugleich eine Erwiderung auf die Entgegnung Donath's
n/
Untersuchungen über den Phosphorsäuregehalt der Spinalflüssigkeit unter pathologischen Verhältnissen
Degeneration of β-amyloid-associated cholinergic structures in transgenic APPSW mice
Cholinergic dysfunction is a consistent feature of Alzheimer’s disease, and the interrelationship between β-amyloid deposits, inflammation and early cholinergic cell loss is still not fully understood. To characterize the mechanisms by which β-amyloid and pro-inflammatory cytokines may exert specific degenerating actions on cholinergic cells ultrastructural investigations by electron microscopy were performed in brain sections from transgenic Tg2576 mice that express the Swedish double mutation of the human amyloid precursor protein and progressively develop β-amyloid plaques during aging. Both light and electron microscopical investigations of the cerebral cortex of 19-month-old transgenic mice revealed a number of pathological tissue responses in close proximity of β-amyloid plaques, such as activated microglia, astroglial proliferation, increased number of fibrous astrocytes, brain edema, degeneration of nerve cells, dendrites and axon terminals. Ultrastructural detection of choline acetyl transferase (ChAT)-immunostaining in cerebral cortical sections of transgenic mice clearly demonstrated degeneration of ChAT-immunoreactive fibres in the environment of β-amyloid plaques and activated glial cells suggesting a role of β-amyloid and/or inflammation in specific degeneration of cholinergic synaptic structures
- …
