412 research outputs found
An interferometric technique for B/A measurement
An isentropic phase method is described for measuringin vitro the acoustic nonlinearity parameterB/A of several aqueous buffers, protein solutions, lipid oils, and emulsions. The technique relies upon the use of an acoustic interferometer to measure the small changes in sound speed that accompany a rapid hydrostaticpressure change of between one and two atmospheres. Average accuracies of 0.85% are attainable with this method
How high the temperature of a liquid be raised without boiling?
How high the temperature of a liquid be raised beyond its boiling point
without vaporizing (known as the limit of superheat) is an interesting subject
of investigation. A new method of finding the limit of superheat of liquids is
presented here. The superheated liquids are taken in the form of drops
suspended in visco elastic gel. The nucleation is detected acoustically by a
sensitive piezo-electric transducer, coupled to a multi channel scaler and the
nucleation is observed as a funtion of time and with increase of temperature.
The limit of superheat measured by the present method supersedes all other
measurements and theoretical predictions in reaching closest to the critical
temperature and warrants improved theoretical predictions.Comment: 10 pages, 1 fig. Phys, Rev. E. (2000) in pres
Low-frequency noise reduction of spacecraft structures
Low frequency noise reduction of spacecraft structure
Superheated Microdrops as Cold Dark Matter Detectors
It is shown that under realistic background considerations, an improvement in
Cold Dark Matter sensitivity of several orders of magnitude is expected from a
detector based on superheated liquid droplets. Such devices are totally
insensitive to minimum ionizing radiation while responsive to nuclear recoils
of energies ~ few keV. They operate on the same principle as the bubble
chamber, but offer unattended, continuous, and safe operation at room
temperature and atmospheric pressure.Comment: 15 pgs, 4 figures include
A Corrected Mixture Law For B/A
A derivation is presented that corrects an expression for the effective acoustic nonlinearity parameter of a mixture of immiscible liquids. The derivation is based upon a mass fraction, rather than volume fraction, formulation
First Dark Matter Limits from a Large-Mass, Low-Background Superheated Droplet Detector
We report on the fabrication aspects and calibration of the first large
active mass ( g) modules of SIMPLE, a search for particle dark matter
using Superheated Droplet Detectors (SDDs). While still limited by the
statistical uncertainty of the small data sample on hand, the first weeks of
operation in the new underground laboratory of Rustrel-Pays d'Apt already
provide a sensitivity to axially-coupled Weakly Interacting Massive Particles
(WIMPs) competitive with leading experiments, confirming SDDs as a convenient,
low-cost alternative for WIMP detection.Comment: Final version, Phys. Rev. Lett. (in press
Nonlinear Modes of Liquid Drops as Solitary Waves
The nolinear hydrodynamic equations of the surface of a liquid drop are shown
to be directly connected to Korteweg de Vries (KdV, MKdV) systems, giving
traveling solutions that are cnoidal waves. They generate multiscale patterns
ranging from small harmonic oscillations (linearized model), to nonlinear
oscillations, up through solitary waves. These non-axis-symmetric localized
shapes are also described by a KdV Hamiltonian system. Recently such ``rotons''
were observed experimentally when the shape oscillations of a droplet became
nonlinear. The results apply to drop-like systems from cluster formation to
stellar models, including hyperdeformed nuclei and fission.Comment: 11 pages RevTex, 1 figure p
Solitons on the edge of a two-dimensional electron system
We present a study of the excitations of the edge of a two-dimensional
electron droplet in a magnetic field in terms of a contour dynamics formalism.
We find that, beyond the usual linear approximation, the non-linear analysis
yields soliton solutions which correspond to uniformly rotating shapes. These
modes are found from a perturbative treatment of a non-linear eigenvalue
problem, and as solutions to a modified Korteweg-de Vries equation resulting
from a local induction approximation to the nonlocal contour dynamics. We
discuss applications to the edge modes in the quantum Hall effect.Comment: 4 pages, 2 eps figures (included); to appear in Phys. Rev. Letter
Cavitation Inception on Microparticles: A Self-Propelled Particle Accelerator
Corrugated, hydrophilic particles with diameters between 30 �m and 150 �m are found to cause cavitation inception at their surfaces when they are exposed to a short, intensive tensile stress wave. The growth of cavity and its interaction with the original nucleating particle is recorded by means of digital imaging. The growing cavity accelerates the particle into translatory motion until the tensile stress decreases, and subsequently the particle separates from the cavity. The cavity growth and particle detachment are modeled by considering the momentum of the particle and the displaced liquid. The analysis suggests that all particles which cause cavitation are accelerated into translatory motion, and separate from the cavities they themselves nucleate
- …
