640 research outputs found
Surface modification, strengthening effect and electrochemical comparative study of Zn-Al2O3-CeO3 and Zn-TiO2-CeO3 coating on mild steel
Surface enhancement of engineering materials is
necessary for preventing service failure and corrosion attacks
industrially. The surface modification, strengthening effect
and electrochemical comparative study of Zn-Al2O3-CeO3
and Zn-TiO2-CeO3 coating on mild steel was investigated.
Deposition was performed to obtain a better surface adherent
coating using the electrodeposition technique. Co-deposition
of mild steel resulted into surface modification attributes to
the complex alloys that were developed. Films of mild steel
were electrodeposited on zinc electrodes using the chloride
bath solutions. The effect of deposition potentials was systematically
studied using a focus ion beam scanning electron
microscope (FIB-SEM) and an atomic force microscope
(AFM) to observe the surface morphology, topography and
the surface adherent properties of the coatings. The elemental
composition and the phases evolved in composite coatings were measured by means of the energy dispersed
spectrometer (EDS). The microhardness measurements and
corrosion behaviours of the deposits were investigated.
Weight loss measurement was conducted on the plated samples
to observe the rate of corrosion and it was observed that
there was severe corrosion on the controlled sample in comparison
to the plated samples and that Zn-TiO2-CeO3
resisted more corrosion attacks
Effect of WO3 Nanoparticle Loading on the Microstructural, Mechanical and Corrosion Resistance of Zn Matrix/TiO2-WO3 Nanocomposite Coatings for Marine Application
In this study, for marine application purposes, we
evaluated the effect of process parameter and particle loading on
the microstructure, mechanical reinforcement and corrosion
resistance properties of a Zn-TiO2-WO3 nanocomposite produced
via electrodeposition. We characterized the morphological
properties of the composite coatings with a Scanning Electron
Microscope (SEM) equipped with an Energy Dispersive
Spectrometer (EDS). We carried out mechanical examination using
a Dura Scan hardness tester and a CERT UMT-2 multi-functional
tribological tester. We evaluated the corrosion properties by linear
polarization in 3.5% NaCl. The results show that the coatings
exhibited good stability and the quantitative particle loading greatly
enhanced the structural and morphological properties, hardness
behavior and corrosion resistance of the coatings. We observed the
precipitation of this alloy on steel is greatly influenced by the
composite characteristics
Estimation of Parameters in DNA Mixture Analysis
In Cowell et al. (2007), a Bayesian network for analysis of mixed traces of
DNA was presented using gamma distributions for modelling peak sizes in the
electropherogram. It was demonstrated that the analysis was sensitive to the
choice of a variance factor and hence this should be adapted to any new trace
analysed. In the present paper we discuss how the variance parameter can be
estimated by maximum likelihood to achieve this. The unknown proportions of DNA
from each contributor can similarly be estimated by maximum likelihood jointly
with the variance parameter. Furthermore we discuss how to incorporate prior
knowledge about the parameters in a Bayesian analysis. The proposed estimation
methods are illustrated through a few examples of applications for calculating
evidential value in casework and for mixture deconvolution
Chemical interaction, interfacial effect and the microstructural characterization of the induced zinc–aluminum–Solanum tuberosum in chloride solution on mild steel
In this study, we report the effect of Solanum tuberosum (ST) as a strong
additive on the morphological interaction, wear, and hardness properties of electroplated
zinc coating in chloride bath solutions. The structural and the mechanical
behavior of the Zn–Al–ST coating were studied and compared with the properties of
Zn coatings. Characterization of the electrodeposited coatings were carried out
using scanning electron microscopy, energy dispersive spectrometer, AFM, and
X-ray diffraction techniques. The adhesion between the coatings and substrate was
examined mechanically using hardness and wear techniques. From the results,
amorphous Zn–Al–ST coatings were effectively obtained by electrodeposition using
direct current. The coating morphology was revealed to be reliant on the bath
composition containing strong leveling additives. From all indications, ST content
contribute to a strong interfacial surface effect leading to crack-free and better
morphology, good hardness properties, and improved wear resistance due to the
precipitation of Zn2Si and Zn7Al2Si3. Hence, addition of ST is beneficial for the
structural strengthening, hardness, and wear resistance properties of such coatings
Исследование изменений твёрдости поверхности при азотировании сталей
Contact allergies are complex diseases, and one of the important challenges for public health and immunology. The German 'Federal Institute for Risk Assessment' hosted an 'International Workshop on Contact Dermatitis'. The scope of the workshop was to discuss new discoveries and developments in the field of contact dermatitis. This included the epidemiology and molecular biology of contact allergy, as well as the development of new in vitro methods. Furthermore, it considered regulatory aspects aiming to reduce exposure to contact sensitisers. An estimated 15-20% of the general population suffers from contact allergy. Workplace exposure, age, sex, use of consumer products and genetic predispositions were identified as the most important risk factors. Research highlights included: advances in understanding of immune responses to contact sensitisers, the importance of autoxidation or enzyme-mediated oxidation for the activation of chemicals, the mechanisms through which hapten-protein conjugates are formed and the development of novel in vitro strategies for the identification of skin-sensitising chemicals. Dendritic cell cultures and structure-activity relationships are being developed to identify potential contact allergens. However, the local lymph node assay (LLNA) presently remains the validated method of choice for hazard identification and characterisation. At the workshop the use of the LLNA for regulatory purposes and for quantitative risk assessment was also discussed
Consolidated undrained load-carrying capacity of subsea mudmats under combined loading in six degrees of freedom
An experimental study of cathodic protection for chloride contaminated reinforced concrete
Cathodic protection (CP) is being increasingly used on reinforced concrete structures to protect steel reinforcing bars from corrosion in aggressive conditions. Due to the complexity of environmental conditions, the design specifications in national and international standards are still open to discussion to achieve both sufficient and efficient protection for reinforced concrete structures in engineering practices. This paper reports an experimental research to investigate the influence of chloride content on concrete resistivity, rebar corrosion rate and the performance of CP operation using different current densities. It aims to understand the correlation between the chloride content and concrete resistivity together with the CP current requirement, and to investigate the precision of the CP design criteria in standards
Polycystic ovary syndrome
The document attached has been archived with permission from the editor of the Medical Journal of Australia. An external link to the publisher’s copy is included.Polycystic ovary syndrome (PCOS) affects 5-20% of women of reproductive age worldwide. The condition is characterized by hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphology (PCOM) - with excessive androgen production by the ovaries being a key feature of PCOS. Metabolic dysfunction characterized by insulin resistance and compensatory hyperinsulinaemia is evident in the vast majority of affected individuals. PCOS increases the risk for type 2 diabetes mellitus, gestational diabetes and other pregnancy-related complications, venous thromboembolism, cerebrovascular and cardiovascular events and endometrial cancer. PCOS is a diagnosis of exclusion, based primarily on the presence of hyperandrogenism, ovulatory dysfunction and PCOM. Treatment should be tailored to the complaints and needs of the patient and involves targeting metabolic abnormalities through lifestyle changes, medication and potentially surgery for the prevention and management of excess weight, androgen suppression and/or blockade, endometrial protection, reproductive therapy and the detection and treatment of psychological features. This Primer summarizes the current state of knowledge regarding the epidemiology, mechanisms and pathophysiology, diagnosis, screening and prevention, management and future investigational directions of the disorder.Robert J Norman, Ruijin Wu and Marcin T Stankiewic
Updating Reaction Mechanistic Domains for Skin Sensitization: 1. Nucleophilic Skin Sensitizers
It has long been recognized that skin sensitizers either are electrophilic or can be activated to electrophilic species. Several nonanimal assays for skin sensitization are based on this premise. In the course of a project to update dermal sensitization thresholds (DST), we found a substantial number of sensitizers, with no electrophilic or pro-electrophilic alerts, that could be simply explained in terms of the sensitizer acting as a nucleophile. In some cases, the nucleophilic center is a sulfur or phosphorus atom, while in others, it is an aromatic carbon atom. For carbon-centered nucleophiles, a quantitative mechanistic model based on a combination of Hammett σ+ and logP values has been derived. This has been applied to rationalize several groups of known sensitizers with no electrophilic or pro-electrophilic alerts, including anacardic acids and cardols, which are known human sensitizers associated with, inter alia, cashew nut oil, mango, and Ginkgo biloba. The possibility of nucleophilic sensitization needs to be considered when evaluating new chemicals for skin sensitization potential and potency by nonanimal assays, particularly those based on the premise that skin sensitization is dependent upon reactions of electrophiles with skin protein-based nucleophiles
Time-of-flight methodologies with large-area diamond detectors for the effectively characterization of tens MeV protons
A novel detector based on a polycrystalline diamond sensor is here employed in an advanced time-of-flight scheme for the characterization of energetic ions accelerated during laser-matter interactions. The optimization of the detector and of the advanced TOF methodology allow to obtain signals characterized by high signal-to-noise ratio and high dynamic range even in the most challenging experimental environments, where the interaction of high-intensity laser pulses with matter leads to effective ion acceleration, but also to the generation of strong Electromagnetic Pulses (EMPs) with intensities up to the MV/m order. These are known to be a serious threat for the fielded diagnostic systems. In this paper we report on the measurement performed with the PW-class laser system Vega 3 at CLPU (30 J energy, 1021 W/cm2 intensity, 30 fs pulses) irradiating solid targets, where both tens of MeV ions and intense EMP fields were generated. The data were analyzed to retrieve a calibrated proton spectrum and in particular we focus on the analysis of the most energetic portion (E > 5.8 MeV) of the spectrum showing a procedure to deal with the intrinsic lower sensitivity of the detector in the mentioned spectral-range
- …
