1,604 research outputs found
Uncertainty-Aware Organ Classification for Surgical Data Science Applications in Laparoscopy
Objective: Surgical data science is evolving into a research field that aims
to observe everything occurring within and around the treatment process to
provide situation-aware data-driven assistance. In the context of endoscopic
video analysis, the accurate classification of organs in the field of view of
the camera proffers a technical challenge. Herein, we propose a new approach to
anatomical structure classification and image tagging that features an
intrinsic measure of confidence to estimate its own performance with high
reliability and which can be applied to both RGB and multispectral imaging (MI)
data. Methods: Organ recognition is performed using a superpixel classification
strategy based on textural and reflectance information. Classification
confidence is estimated by analyzing the dispersion of class probabilities.
Assessment of the proposed technology is performed through a comprehensive in
vivo study with seven pigs. Results: When applied to image tagging, mean
accuracy in our experiments increased from 65% (RGB) and 80% (MI) to 90% (RGB)
and 96% (MI) with the confidence measure. Conclusion: Results showed that the
confidence measure had a significant influence on the classification accuracy,
and MI data are better suited for anatomical structure labeling than RGB data.
Significance: This work significantly enhances the state of art in automatic
labeling of endoscopic videos by introducing the use of the confidence metric,
and by being the first study to use MI data for in vivo laparoscopic tissue
classification. The data of our experiments will be released as the first in
vivo MI dataset upon publication of this paper.Comment: 7 pages, 6 images, 2 table
Theta-alpha oscillations bind the hippocampus, prefrontal cortex, and striatum during recollection: Evidence from simultaneous EEG-fMRI
Recollection of contextual information represents the core of human recognition memory. It has been associated with theta (4-8 Hz) power in electrophysiological recordings and, independently, with BOLD effects in a network including the hippocampus and frontal cortex. Although the notion of the hippocampus coordinating neocortical activity by synchronization in the theta range is common among theoretical models of recollection, direct evidence supporting this hypothesis is scarce. To address this apparent gap in our understanding of memory processes, we combined EEG and fMRI during a remember/know recognition task. We can show that recollection-specific theta-alpha (4-13Hz) effects are correlated with increases in hippocampal connectivity with the prefrontal cortex and, importantly, the striatum, areas that have repeatedly been linked to retrieval success. Taken together, our results provide compelling evidence that low frequency oscillations in the theta and alpha range provide a mechanism to functionally bind the hippocampus, prefrontal cortex and striatum during successful recollection
Focal myocardial fibrosis assessed by late gadolinium enhancement cardiovascular magnetic resonance in children and adolescents with dilated cardiomyopathy
BACKGROUND: Different patterns of late gadolinium enhancement (LGE) including mid-wall fibrosis using cardiovascular magnetic resonance (CMR) have been reported in adult patients presenting with non-ischemic dilated cardiomyopathy (DCM). In these studies, LGE was associated with pronounced LV remodelling and predicted adverse cardiac outcomes. Accordingly, the purpose of our study was to determine the presence and patterns of LGE in children and adolescents with DCM.
METHODS: Patients <18years of age presenting with severe congestive heart failure who were admitted for evaluation of heart transplantation at our centre underwent CMR examination which consisted of ventricular functional analysis and assessment of LGE for detection of myocardial fibrosis. Ischemic DCM was excluded by coronary angiography, and right ventricular endomyocardial biopsies ruled out acute myocarditis.
RESULTS:Thirty-one patients (mean age 2.1+/-4.2years) with severe LV dilatation (mean indexed LVEDV 136+/-48ml/m2) and LV dysfunction (mean LV-EF 23+/-8%) were examined. LGE was detected in 5 of the 31 patients (16%) appearing in various patterns characterized as mid-wall (n=1), focal patchy (n=1), RV insertion site (n=1) and transmural (n=2). Based on histopathological analysis, 4 of the 5 LGE positive patients had lymphocytic myocarditis, whereas one patient was diagnosed with idiopathic DCM.
CONCLUSIONS: In children and adolescents with DCM, focal histologically proven myocardial fibrosis is rarely detected by LGE CMR despite marked LV dilatation and severely depressed LV function. LGE occurred in various patterns and mostly in patients with inflammatory cardiomyopathy. It remains unclear whether myocardial fibrosis in childhood DCM reflects different endogenous repair mechanisms that enable favourable reverse remodelling. Larger trials are needed to assess the prognostic implications of LGE in childhood DCM
Heart rate variability is related to disease severity in children and young adults with pulmonary hypertension
Background:
Pulmonary hypertension (PH) is frequently associated with an increase in sympathetic tone. This may adversely affect cardiac autonomic control. Knowledge about the clinical impact of autonomic dysfunction in patients with PH is limited. We aimed to assess whether parameters of heart rate variability (HRV) are related to disease severity in children with PH.
Methods:
Parameters of HRV [SDNN, standard deviation of normal-to-normal intervals and SDANN, standard deviation of mean values for normal-to-normal intervals over 5 min] were determined from Holter electrocardiograms of 17 patients with PH without active intracardial shunt (10 female, mean age 12.8 ± 8.7 years). Patients were allocated to two groups according to their disease severity: patients with moderate PH [ratio of pulmonary to systemic arterial pressure (PAP/SAP ratio) 0.75) (n = 6). An additional group of five adolescents with Eisenmenger syndrome (PAP/SAP ratio 1.13 ± 0.36) was included.
Results:
Children with severe PH had significantly lower values of HRV [SDNN (73.8 ± 21.1 vs. 164.9 ± 38.1 ms), SDANN (62.2 ± 19.0 vs. 139.5 ± 33.3 ms)] compared to patients with moderate PH (p = 0.0001 for all). SDNN inversely correlated with ratio of PAP/SAP of PH patients without shunt (r = -0.82; p = 0.0002). Eisenmenger patients showed no significant difference of HRV [SDNN 157.6 ± 43.2 ms, SDANN 141.2 ± 45.3 ms] compared to patients with moderate PH without shunt (p > 0.05 for all).
Conclusion:
According to our results, children with severe PH may have alterations in HRV. Since HRV appears to be related to disease severity, it may therefore serve as an additional diagnostic marker of PH. Remarkably, although Eisenmenger patients have systemic pulmonary arterial pressures, they seem to have preserved HRV, which might reflect a more favorable autonomic adaptation
Molecular Orientation in Optical Polymer Films
In this thesis, orientation, dynamics, and electric conduction is investigated in films of various electro-optic polymers as functions of different parameters, such as the poling temperature and the chromophore concentration. The chromophore orientation distribution function is determined using electro-optic and dichroism measurements. The results are compared with those obtained by density-functional calculations and complementary wide-angle X-ray scattering. Time-resolved ellipsometry is used to record and analyze the dynamics of molecular orientation. Furthermore, dielectric spectroscopy is applied to investigate the influence of orientation on electronic conduction properties. The results of the analysis of the experimental data are compared with those obtained by Monte-Carlo simulations
Towards a Strawberry Harvest Prediction System Using Computer Vision and Pattern Recognition
Farmers require advance notice when a harvest is approaching, so they can allocate resources and hire workers as efficiently as possible. Existing methods are subjective and labor intensive, and require the expertise of a professional forecaster. Cal Poly’s EE department has been collaborating with the Cal Poly Strawberry Center to investigate the potential in using digital imaging processing to predict harvests more reliably. This paper shows the progress of that ongoing project, as well as what aspects could still be improved. Three main blocks comprise this system: data acquisition, which obtains and catalogues images of the strawberry plants; computer vision, which extracts information from the images and constructs a time-series model of the field as a whole; and prediction, which uses the field’s history to guess when the most likely harvest window will be. The best method of data acquisition is determined through a decision matrix to be a small autonomous rover. Several challenges specific to images captured via drone, such as fisheye distortion and dirt masking, are examined and mitigated. Using thresholding, the nRGB color space is shown to be the most promising for image segmentation of red strawberries. Data from field 25 at the Cal Poly Strawberry Center is tabulated, analyzed, and compared against industry trends across California. Ultimately, this work serves as a strong benchmark towards a full strawberry yield prediction system
Late gadolinium enhancement and adverse outcomes in a contemporary cohort of adult survivors of tetralogy of Fallot
Objective:
Myocardial fibrosis has been associated with poorer outcomes in tetralogy of Fallot, however only a handful of studies have assessed its significance in the current era. Our aim was to quantify the amount of late gadolinium enhancement in both the LV and RV in a contemporary cohort of adults with surgically repaired tetralogy of Fallot, and assess the relationship with adverse clinical outcomes.
Design:
Single centre cohort study
Setting:
National tertiary referral center
Patients: One hundred fourteen patients with surgically repaired tetralogy of Fallot with median age 29.5 years (range 17.5-64.2). Prospective follow-up for mean 2.4 years (SD 1.29).
Interventions:
Cardiovascular magnetic resonance was performed, and late gadolinium enhancement mass was estimated for the LV using the 5-SD remote myocardium method, and for the RV using a segmental scoring system. Cohort characterization was determined through the use of a computerized database.
Outcome measures:
Survival analysis from time of scan to first adverse event, defined as an episode of atrial arrhythmia, sustained ventricular arrhythmia, hospitalization with heart failure, or implantable cardioverter-defibrillator insertion.
Results:
Eleven patients experienced an adverse outcome in the follow-up period, although there were no deaths. LV late gadolinium enhancement was associated with adverse outcomes in a univariate model (P = .027). However, when adjusted for age at scan the significant variables included NYHA class (P = .006), peak oxygen uptake (P = .028), number of prior sternotomies (P = .044), and higher indexed RV and LV end diastolic volumes (P = .002 and P < .001), but not RV or LV late gadolinium enhancement.
Conclusions:
Formal quantification of late gadolinium enhancement is not currently as helpful in ascertaining prognosis compared to other, more easily assessed parameters in a contemporary cohort of tetralogy of Fallot survivors, however assessment particularly of the LV holds promise for the future
Recommended from our members
Passive sampling methods for contaminated sediments: Risk assessment and management
This paper details how activity-based passive sampling methods (PSMs), which provide information on bioavailability in terms of freely dissolved contaminant concentrations (Cfree), can be used to better inform risk management decision making at multiple points in the process of assessing and managing contaminated sediment sites. PSMs can increase certainty in site investigation and management, because Cfree is a better predictor of bioavailability than total bulk sediment concentration (Ctotal) for 4 key endpoints included in conceptual site models (benthic organism toxicity, bioaccumulation, sediment flux, and water column exposures). The use of passive sampling devices (PSDs) presents challenges with respect to representative sampling for estimating average concentrations and other metrics relevant for exposure and risk assessment. These challenges can be addressed by designing studies that account for sources of variation associated with PSMs and considering appropriate spatial scales to meet study objectives. Possible applications of PSMs include: quantifying spatial and temporal trends in bioavailable contaminants, identifying and evaluating contaminant source contributions, calibrating site-specific models, and, improving weight-of-evidence based decision frameworks. PSM data can be used to assist in delineating sediment management zones based on likelihood of exposure effects, monitor remedy effectiveness, and, evaluate risk reduction after sediment treatment, disposal, or beneficial reuse after management actions. Examples are provided illustrating why PSMs and freely dissolved contaminant concentrations (Cfree) should be incorporated into contaminated sediment investigations and study designs to better focus on and understand contaminant bioavailability, more accurately estimate exposure to sediment-associated contaminants, and better inform risk management decisions. Research and communication needs for encouraging broader use are discussed. Integr Environ Assess Manag 2014;10:224–236. © 2014 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC
Patterning and Conductivity Modulation of Conductive Polymers by UV Light Exposure
A novel patterning technique of conductive polymers produced by vapor phase polymerization is demonstrated. The method involves exposing an oxidant film to UV light which changes the local chemical environment of the oxidant and subsequently the polymerization kinetics. This procedure is used to control the conductivity in the conjugated polymer poly(3,4-ethylenedioxythiophene): tosylate by more than six orders of magnitude in addition to producing high-resolution patterns and optical gradients. The mechanism behind the modulation in the polymerization kinetics by UV light irradiation as well as the properties of the resulting polymer are investigated.Funding Agencies|Knut and Alice Wallenberg Foundation [KAW 2011.0050, KAW 2014.0041, KAW 2012.0302]</p
- …
