43 research outputs found
Curcuma comosa ameliorates cisplatin-induced nephrotoxicity: COX-2 expression and ultrastructure changes
Topical Application of ASPP 092, a Diarylheptanoid Isolated from Curcuma comosa Roxb, Accelerates Wound Healing
Wound healing is the restorative process of skin or tissue injury, composed of the inflammatory, proliferative, maturation, and remodeling phases. The current study aimed to examine the efficacy of ASPP 092 (a well-characterized diarylheptanoid from Curcuma comosa Roxb) in modulating wound healing. Full-thickness excision wounds were made in rats and treated with either ASPP 092 (dose: 1 mg/mL and 2 mg/mL) or mupirocin (bioequivalent formulation). A control group treated with the vehicle (gel base) was also maintained. The healing efficacy of ASPP 092 was evaluated based on gross appearance, wound closure, and histopathology on days 3, 7, and 12 post-wounding. The expression of cyclooxygenase-2 (COX-2) among the groups was also determined on day 3 post-wounding. Our results suggest that ASPP 092 treatment accelerated wound healing, as evidenced by rapid wound closure, re-epithelialization, and granulation of tissue formation with fewer inflammatory cells. More fibroblasts, collagen fibers, and blood vessels originated with reduced COX-2 expression in the wounds, demonstrating the anti-inflammatory potential of ASPP 092 in experimental wounds. In conclusion, our findings, for the first time, preliminarily identified the potential of ASPP 092 in accelerating wound healing; however, more detailed studies on its mechanism of action in wound healing are required.</jats:p
Topical Application of ASPP 092, a Diarylheptanoid Isolated from Curcuma comosa Roxb, Accelerates Wound Healing
Wound healing is the restorative process of skin or tissue injury, composed of the inflammatory, proliferative, maturation, and remodeling phases. The current study aimed to examine the efficacy of ASPP 092 (a well-characterized diarylheptanoid from Curcuma comosa Roxb) in modulating wound healing. Full-thickness excision wounds were made in rats and treated with either ASPP 092 (dose: 1 mg/mL and 2 mg/mL) or mupirocin (bioequivalent formulation). A control group treated with the vehicle (gel base) was also maintained. The healing efficacy of ASPP 092 was evaluated based on gross appearance, wound closure, and histopathology on days 3, 7, and 12 post-wounding. The expression of cyclooxygenase-2 (COX-2) among the groups was also determined on day 3 post-wounding. Our results suggest that ASPP 092 treatment accelerated wound healing, as evidenced by rapid wound closure, re-epithelialization, and granulation of tissue formation with fewer inflammatory cells. More fibroblasts, collagen fibers, and blood vessels originated with reduced COX-2 expression in the wounds, demonstrating the anti-inflammatory potential of ASPP 092 in experimental wounds. In conclusion, our findings, for the first time, preliminarily identified the potential of ASPP 092 in accelerating wound healing; however, more detailed studies on its mechanism of action in wound healing are required
Non-Rotation of the Midgut in Adults
Two cases of non-rotation of the midgut were detected in cadaveric bodies from the Department of Anatomy, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand. They were both female, aged 83 and 32, respectively. In both cases, the duodenum, jejunum, ileum, and colon lay in the unrotated position with the small intestine occupying the right half and the large intestine occupying the left half of the abdominal cavity. Additionally, the duodenojejunal junction remained on the right side of the abdomen, whereas the caecum and ascending colon lay in the midline, with the terminal ileum entering the right side of the caecum. The appendix entered the left side of the caecum. Interestingly, they had had no clinical symptoms during life. These abnormalities implied that midgut rotation during embryonic period occurred only as far as 90-degrees counterclockwise instead of the usual 270-degree rotation.
To our knowledge, this is the first report of asymptomatic non-rotation of the midgut in Thailand. The variation found in the present study provides additional information concerning the variation seen in human anatomy and should be considered in patients with atypical symptoms related to the gastro-intestinal tract
Crocetin Improves Dengue Virus-Induced Liver Injury
Dengue virus (DENV) infection is one of the most widespread mosquito-borne viral infections. Liver injury is commonly observed in severe DENV infection, and the present study aimed to examine the efficacy of crocetin treatment in an immunocompetent mouse model of DENV infection exhibiting liver injury. The efficacy of crocetin treatment in DENV-induced liver injury was assessed via both transaminase levels and histopathology analysis. A real-time polymerase chain reaction array was then used to describe the expression of 84 apoptosis-related genes. Using real-time RT-PCR and Western blot analysis, the gene expressions of host factors were investigated. Additionally, the effect of crocetin in NF-kB signaling during DENV infection was studied. We did not observe any significant reduction in virus production when DENV-infected mice were treated with crocetin. However, DENV-infected mice treated with crocetin showed reduced DENV-induced apoptosis. The real-time polymerase chain reaction array revealed pro-inflammatory cytokine expressions to be significantly reduced in the crocetin-treated DENV-infected mice. We also found that crocetin could effectively modulate antioxidant status in DENV-infected mice. Moreover, crocetin demonstrated the ability to reduce the nuclear translocation of NF-kB in DENV-infected mice. Our results suggest that crocetin treatment does not inhibit DENV replication in the liver of DENV-infected mice; however, we did find that crocetin improves host responses that reduce liver injury.</jats:p
Non-Phenolic Diarylheptanoid from Curcuma comosa Protects Against Thioacetamide-Induced Acute Hepatotoxicity in Mice
Invalid freeze-dried platelet gel promotes wound healing
Wound healing is the curative process of tissue injury, composed of three phases: the inflammatory phase, proliferative phase, followed by the maturation cum remodeling phase. Various treatment options were previously depicted for wound healing, however a treatment that accelerates these phases would be highly valuable. Platelet aggregation at the bleeding vessels and release of various growth factors are the most promising factors that stimulates the wound healing progress. In the present study, we hypothesized that the freeze-dried platelet which were normally discarded from the blood banks due to invalidity, might be promising to accelerate the phases of wound healing. The invalid freeze-dried platelets were prepared to a gel form called invalid freeze-dried platelet gel (IF-PG), which was tested for its efficacy in a cutaneous punch wound model in rats. Mupirocin antibiotic gel was used as a bio-equivalent formulation. The wound healing phases and changes in the wound sites were determined by assessing the wound sizes, histopathological analysis, immunohistochemical staining. The re-epithelialization at the wound sites at different time intervals till the wound closure was also determined. Our results suggest the beneficial effects of IF-PG; in reducing the wound area and accelerating wound closure in the cutaneous punch wound in rats. Histopathology and immunostaining results support the improvements in the wound when treated with IF-PG, which were similar to that of mupirocin antibiotic gel. Our preliminary findings also warrant the competency of IF-PG in modulating the different phases of wound healing process. In conclusion, IF-PG might be a resourceful alternative for the wound care management, however further studies are required to validate its impact on various growth factors before proceeding to clinical studies. Keywords: IF-PG, Wound healing, Animal model, Re-epithelializatio
Evaluation of the acute and subacute toxicity of a choleretic phloracetophenone in experimental animals
Crocetin Improves Dengue Virus-Induced Liver Injury
Dengue virus (DENV) infection is one of the most widespread mosquito-borne viral infections. Liver injury is commonly observed in severe DENV infection, and the present study aimed to examine the efficacy of crocetin treatment in an immunocompetent mouse model of DENV infection exhibiting liver injury. The efficacy of crocetin treatment in DENV-induced liver injury was assessed via both transaminase levels and histopathology analysis. A real-time polymerase chain reaction array was then used to describe the expression of 84 apoptosis-related genes. Using real-time RT-PCR and Western blot analysis, the gene expressions of host factors were investigated. Additionally, the effect of crocetin in NF-kB signaling during DENV infection was studied. We did not observe any significant reduction in virus production when DENV-infected mice were treated with crocetin. However, DENV-infected mice treated with crocetin showed reduced DENV-induced apoptosis. The real-time polymerase chain reaction array revealed pro-inflammatory cytokine expressions to be significantly reduced in the crocetin-treated DENV-infected mice. We also found that crocetin could effectively modulate antioxidant status in DENV-infected mice. Moreover, crocetin demonstrated the ability to reduce the nuclear translocation of NF-kB in DENV-infected mice. Our results suggest that crocetin treatment does not inhibit DENV replication in the liver of DENV-infected mice; however, we did find that crocetin improves host responses that reduce liver injury
