50 research outputs found
Indistinguishability Obfuscation Without Maps: Attacks and Fixes for Noisy Linear FE
Candidates of Indistinguishability Obfuscation (iO) can be categorized as ``direct\u27\u27 or ``bootstrapping based\u27\u27. Direct constructions rely on high degree multilinear maps [GGH13,GGHRSW13] and provide heuristic guarantees, while bootstrapping based constructions [LV16,Lin17,LT17,AJLMS19,Agr19,JLMS19] rely, in the best case, on bilinear maps as well as new variants of the Learning With Errors (LWE) assumption and pseudorandom generators. Recent times have seen exciting progress in the construction of indistinguishability obfuscation (iO) from bilinear maps (along with other assumptions) [LT17,AJLMS19,JLMS19,Agr19].
As a notable exception, a recent work by Agrawal [Agr19] provided a construction for iO without using any maps. This work identified a new primitive, called Noisy Linear Functional Encryption (NLinFE) that provably suffices for iO and gave a direct construction of NLinFE from new assumptions on lattices. While a preliminary cryptanalysis for the new assumptions was provided in the original work, the author admitted the necessity of performing significantly more cryptanalysis before faith could be placed in the security of the scheme. Moreover, the author did not suggest concrete parameters for the construction.
In this work, we fill this gap by undertaking the task of thorough cryptanalytic study of NLinFE. We design two attacks that let the adversary completely break the security of the scheme. To achieve this, we develop new cryptanalytic techniques which (we hope) will inform future designs of the primitive of NLinFE.
From the knowledge gained by our cryptanalytic study, we suggest modifications to the scheme. We provide a new scheme which overcomes the vulnerabilities identified before. We also provide a thorough analysis of all the security aspects of this scheme and argue why plausible attacks do not work. We additionally provide concrete parameters with which the scheme may be instantiated. We believe the security of NLinFE stands on significantly firmer footing as a result of this work
Resilience and hope during advanced disease: a pilot study with metastatic colorectal cancer patients
Cytochemical localization of adenylate cyclase in the various tissues of Locusta migratoria (migratorioides R.F.)
The potential usefulness of interleukin-2 activated bone marrow cells as an active therapeutic tool against cytomegalovirus infection in a bone marrow transplantation setting
All-but-many lossy trapdoor functions from lattices and applications
“All-but-many lossy trapdoor functions” (ABM-LTF) are a powerful cryptographic primitive studied by Hofheinz (Eurocrypt 2012). ABM-LTFs are parametrised with tags: a lossy tag makes the function lossy; an injective tag makes the function injective, and invertible with a trapdoor. Existing ABM-LTFs rely on non-standard assumptions. Our first result is an ABM-LTF construction from lattices, based on the learning-with-errors (LWE) problem. Unlike the previous schemes which behaved as “encrypted signatures”, the core of our construction is an “encrypted, homomorphic-evaluation-friendly, weak pseudorandom function”. The weak pseudorandom function outputs matrices, where the lossy tags are preimages of the zero matrix, and the injective tags are preimages of random full-rank matrices. Our second result is a public-key system tightly secure against “selective opening” attacks, where an attacker gets many challenges and can ask to see the random bits of any of them. Following the steps of Hemenway et al. (Asiacrypt 2011) and Hofheinz (Eurocrypt 2012), our ABM-LTF gives the first lattice-based, compact public-key encryption (PKE) scheme that has indistinguishability against adaptive chosen-ciphertext and selective opening attacks (IND-SO-CCA2), with tight security, and whose public-key size and security reduction are independent of the number of decryption queries and ciphertext challenges. Meanwhile, this result provides an alternative solution to the problem of building pairing-free IND-CCA2 PKE schemes with tight security in the multi-challenge setting, which was firstly answered by Gay et al. (Eurocrypt 2016). Additionally, our ABM-LTF answers the open question of constructing (non-necessarily lossy) all-but-many trapdoor functions from lattices, first asked by Alperin-Sheriff and Peikert (PKC 2012)
