1,026 research outputs found
Adaptive multibeam antennas for spacelab. Phase A: Feasibility study
The feasibility was studied of using adaptive multibeam multi-frequency antennas on the spacelab, and to define the experiment configuration and program plan needed for a demonstration to prove the concept. Three applications missions were selected, and requirements were defined for an L band communications experiment, an L band radiometer experiment, and a Ku band communications experiment. Reflector, passive lens, and phased array antenna systems were considered, and the Adaptive Multibeam Phased Array (AMPA) was chosen. Array configuration and beamforming network tradeoffs resulted in a single 3m x 3m L band array with 576 elements for high radiometer beam efficiency. Separate 0.4m x 0.4 m arrays are used to transmit and receive at Ku band with either 576 elements or thinned apertures. Each array has two independently steerable 5 deg beams, which are adaptively controlled
The fractional Schr\"{o}dinger operator and Toeplitz matrices
Confining a quantum particle in a compact subinterval of the real line with
Dirichlet boundary conditions, we identify the connection of the
one-dimensional fractional Schr\"odinger operator with the truncated Toeplitz
matrices. We determine the asymptotic behaviour of the product of eigenvalues
for the -stable symmetric laws by employing the Szeg\"o's strong limit
theorem. The results of the present work can be applied to a recently proposed
model for a particle hopping on a bounded interval in one dimension whose
hopping probability is given a discrete representation of the fractional
Laplacian.Comment: 10 pages, 2 figure
Regularity of Ornstein-Uhlenbeck processes driven by a L{\'e}vy white noise
The paper is concerned with spatial and time regularity of solutions to
linear stochastic evolution equation perturbed by L\'evy white noise "obtained
by subordination of a Gaussian white noise". Sufficient conditions for spatial
continuity are derived. It is also shown that solutions do not have in general
\cadlag modifications. General results are applied to equations with fractional
Laplacian. Applications to Burgers stochastic equations are considered as well.Comment: This is an updated version of the same paper. In fact, it has already
been publishe
The Ge(001) (2 × 1) reconstruction: asymmetric dimers and multilayer relaxation observed by grazing incidence X-ray diffraction
Grazing incidence X-ray diffraction has been used to analyze in detail the atomic structure of the (2 × 1) reconstruction of the Ge(001) surface involving far reaching subsurface relaxations. Two kinds of disorder models, a statistical and a dynamical were taken into account for the data analysis, both indicating substantial disorder along the surface normal. This can only be correlated to asymmetric dimers.
Considering a statistical disorder model assuming randomly oriented dimers the analysis of 13 symmetrically independent in-plane fractional order reflections and of four fractional order reciprocal lattice rods up to the maximum attainable momentum transfer qz = 3c* (c* = 1.77 × 10−1 Å−1) indicates the formation of asymmetric dimers characterized by R>D = 2.46(5) Å as compared to the bulk bonding length of R = 2.45 Å. The dimer height of Δ Z = 0.74(15) Å corresponds to a dimer buckling angle of 17(4)°. The data refinement using anisotropic thermal parameters leads to a bonding length of RD = 2.44(4) Å and to a large anisotropy of the root mean-square vibration amplitudes of the dimer atoms (u112) 1/2 = 0.25 Å, (u222)1/2 = 0.14 Å, (u332)1/2 = 0.50 Å). We have evidence for lateral and vertical disp tenth layer below the surface
L\'evy-Schr\"odinger wave packets
We analyze the time--dependent solutions of the pseudo--differential
L\'evy--Schr\"odinger wave equation in the free case, and we compare them with
the associated L\'evy processes. We list the principal laws used to describe
the time evolutions of both the L\'evy process densities, and the
L\'evy--Schr\"odinger wave packets. To have self--adjoint generators and
unitary evolutions we will consider only absolutely continuous, infinitely
divisible L\'evy noises with laws symmetric under change of sign of the
independent variable. We then show several examples of the characteristic
behavior of the L\'evy--Schr\"odinger wave packets, and in particular of the
bi-modality arising in their evolutions: a feature at variance with the typical
diffusive uni--modality of both the L\'evy process densities, and the usual
Schr\"odinger wave functions.Comment: 41 pages, 13 figures; paper substantially shortened, while keeping
intact examples and results; changed format from "report" to "article";
eliminated Appendices B, C, F (old names); shifted Chapters 4 and 5 (old
numbers) from text to Appendices C, D (new names); introduced connection
between Relativistic q.m. laws and Generalized Hyperbolic law
Mixtures in non stable Levy processes
We analyze the Levy processes produced by means of two interconnected classes
of non stable, infinitely divisible distribution: the Variance Gamma and the
Student laws. While the Variance Gamma family is closed under convolution, the
Student one is not: this makes its time evolution more complicated. We prove
that -- at least for one particular type of Student processes suggested by
recent empirical results, and for integral times -- the distribution of the
process is a mixture of other types of Student distributions, randomized by
means of a new probability distribution. The mixture is such that along the
time the asymptotic behavior of the probability density functions always
coincide with that of the generating Student law. We put forward the conjecture
that this can be a general feature of the Student processes. We finally analyze
the Ornstein--Uhlenbeck process driven by our Levy noises and show a few
simulation of it.Comment: 28 pages, 3 figures, to be published in J. Phys. A: Math. Ge
Stochastic Loewner evolution driven by Levy processes
Standard stochastic Loewner evolution (SLE) is driven by a continuous
Brownian motion, which then produces a continuous fractal trace. If jumps are
added to the driving function, the trace branches. We consider a generalized
SLE driven by a superposition of a Brownian motion and a stable Levy process.
The situation is defined by the usual SLE parameter, , as well as
which defines the shape of the stable Levy distribution. The resulting
behavior is characterized by two descriptors: , the probability that the
trace self-intersects, and , the probability that it will approach
arbitrarily close to doing so. Using Dynkin's formula, these descriptors are
shown to change qualitatively and singularly at critical values of and
. It is reasonable to call such changes ``phase transitions''. These
transitions occur as passes through four (a well-known result) and as
passes through one (a new result). Numerical simulations are then used
to explore the associated touching and near-touching events.Comment: Published version, minor typos corrected, added reference
On the Computational Complexity of Measuring Global Stability of Banking Networks
Threats on the stability of a financial system may severely affect the
functioning of the entire economy, and thus considerable emphasis is placed on
the analyzing the cause and effect of such threats. The financial crisis in the
current and past decade has shown that one important cause of instability in
global markets is the so-called financial contagion, namely the spreading of
instabilities or failures of individual components of the network to other,
perhaps healthier, components. This leads to a natural question of whether the
regulatory authorities could have predicted and perhaps mitigated the current
economic crisis by effective computations of some stability measure of the
banking networks. Motivated by such observations, we consider the problem of
defining and evaluating stabilities of both homogeneous and heterogeneous
banking networks against propagation of synchronous idiosyncratic shocks given
to a subset of banks. We formalize the homogeneous banking network model of
Nier et al. and its corresponding heterogeneous version, formalize the
synchronous shock propagation procedures, define two appropriate stability
measures and investigate the computational complexities of evaluating these
measures for various network topologies and parameters of interest. Our results
and proofs also shed some light on the properties of topologies and parameters
of the network that may lead to higher or lower stabilities.Comment: to appear in Algorithmic
- …
