229 research outputs found
Analysis of Protein Structure-Function in Vivo: ADENOVIRUS-MEDIATED TRANSFER OF LIPASE LID MUTANTS IN HEPATIC LIPASE-DEFICIENT MICE
Hepatic lipase (HL) and lipoprotein lipase (LPL) are key enzymes involved in the hydrolysis of triglycerides and phospholipids present in circulating plasma lipoproteins. Despite their similarities, the role that each of these two lipases play in the metabolism of triglyceride-rich lipoproteins and high density lipoproteins is distinct. In order to identify structural domains that may confer the different substrate specificities between HL and LPL, we have utilized a novel approach for performing structure-function analysis of a protein, in vivo, by using recombinant adenovirus vectors to express native and mutant enzymes in an animal model for a human genetic deficiency. HL-deficient mice (n = 19) characterized by increased plasma cholesterol and phospholipid concentrations were injected with adenovirus expressing luciferase (rLucif-AdV), native hepatic (rHL-AdV), and lipoprotein lipase (rLPL-AdV) or lipase mutants in which the lid covering the catalytic site of either enzyme was exchanged (rHL+LPL lid-AdV and rLPL+HL lid-AdV). Mice injected with rLucif-AdV had no changes in post-heparin HL and LPL activities (217 +/- 29 and 7 +/- 2 nmol/min/ml, respectively) as well as plasma lipids. Despite expression of similar levels of post-heparin plasma lipase activity on day 5 post-adenovirus infusion (9806 +/- 915 and 9677 +/- 2033 nmol/min/ml, respectively) mice injected with rHL-AdV or rHL+LPL lid-AdV demonstrated marked differences in the reduction of plasma phospholipids (70% and 32%, respectively, p < 0.005). Similarly, despite post-heparin plasma lipolytic activities of 4495 +/- 534 and 4844 +/- 1336 nmol/min/ml, injection of rLPL-AdV or rLPL+HL lid-AdV resulted in phospholipid reductions of 31% and 81% (p < 0.005). Exchange of the lipase lid did not significantly alter plasma triglyceride concentrations. Thus, preferential in vivo hydrolysis of phospholipids was demonstrated in animals expressing lipases containing the HL lid but not the LPL lid. These studies identify the lipase lid as a major structural motif responsible for conferring the different in vivo phospholipase activities between HL and LPL, a function which may modulate the distinct physiological roles of these two similar lipolytic enzymes in lipoprotein metabolism. The use of recombinant adenovirus to express mutant proteins in animal models for human genetic deficiencies represents a powerful, new approach for performing structure-function analysis of proteins in vivo
Hepatic lipase gene therapy in hepatic lipase-deficient mice. Adenovirus-mediated replacement of a lipolytic enzyme to the vascular endothelium.
Hepatic lipase (HL) is an endothelial-bound lipolytic enzyme which functions as a phospholipase as well as a triacylglycerol hydrolase and is necessary for the metabolism of IDL and HDL. To evaluate the feasibility of replacing an enzyme whose in vivo physiologic function depends on its localization on the vascular endothelium, we have infused recombinant replication-deficient adenovirus vectors expressing either human HL (HL-rAdV; n = 7) or luciferase cDNA (Lucif-rAdV; n = 4) into HL-deficient mice with pretreatment plasma cholesterol, phospholipid, and HDL cholesterol values of 176 +/- 9, 314 +/- 12, and 129 +/- 9, respectively. After infusion of HL-rAdV, HL could be detected in the postheparin plasma of HL-deficient mice by immunoblotting and postheparin plasma HL activities were 25,700 +/- 4,810 and 1,510 +/- 688 nmol/min/ml on days 5 and 15, respectively. Unlike the mouse HL, 97% of the newly synthesized human HL was heparin releasable, indicating that the human enzyme was virtually totally bound to the mouse vascular endothelium. Infusion of HL-rAdV in HL-deficient mice was associated with a 50-80% decrease in total cholesterol, triglyceride, phospholipids, cholesteryl ester, and HDL cholesterol (P < 0.001) as well as normalization of the plasma fast protein liquid chromatography lipoprotein profile by day 8. These studies demonstrate successful expression and delivery of a lipolytic enzyme to the vascular endothelium for ultimate correction of the HL gene defect in HL-deficient mice and indicate that recombinant adenovirus vectors may be useful in the replacement of endothelial-bound lipolytic enzymes in human lipolytic deficiency states
VLDL Hydrolysis by Hepatic Lipase Regulates PPARδ Transcriptional Responses
PPARs (α,γ,δ) are a family of ligand-activated transcription factors that regulate energy balance, including lipid metabolism. Despite these critical functions, the integration between specific pathways of lipid metabolism and distinct PPAR responses remains obscure. Previous work has revealed that lipolytic pathways can activate PPARs. Whether hepatic lipase (HL), an enzyme that regulates VLDL and HDL catabolism, participates in PPAR responses is unknown.Using PPAR ligand binding domain transactivation assays, we found that HL interacted with triglyceride-rich VLDL (>HDL≫LDL, IDL) to activate PPARδ preferentially over PPARα or PPARγ, an effect dependent on HL catalytic activity. In cell free ligand displacement assays, VLDL hydrolysis by HL activated PPARδ in a VLDL-concentration dependent manner. Extended further, VLDL stimulation of HL-expressing HUVECs and FAO hepatoma cells increased mRNA expression of canonical PPARδ target genes, including adipocyte differentiation related protein (ADRP), angiopoietin like protein 4 and pyruvate dehydrogenase kinase-4. HL/VLDL regulated ADRP through a PPRE in the promoter region of this gene. In vivo, adenoviral-mediated hepatic HL expression in C57BL/6 mice increased hepatic ADRP mRNA levels by 30%. In ob/ob mice, a model with higher triglycerides than C57BL/6 mice, HL overexpression increased ADRP expression by 70%, demonstrating the importance of triglyceride substrate for HL-mediated PPARδ activation. Global metabolite profiling identified HL/VLDL released fatty acids including oleic acid and palmitoleic acid that were capable of recapitulating PPARδ activation and ADRP gene regulation in vitro.These data define a novel pathway involving HL hydrolysis of VLDL that activates PPARδ through generation of specific monounsaturated fatty acids. These data also demonstrate how integrating cell biology with metabolomic approaches provides insight into specific lipid mediators and pathways of lipid metabolism that regulate transcription
Clonal haematopoiesis and risk of chronic liver disease
Chronic liver disease is a major public health burden worldwide. Although different aetiologies and mechanisms of liver injury exist, progression of chronic liver disease follows a common pathway of liver inflammation, injury and fibrosis. Here we examined the association between clonal haematopoiesis of indeterminate potential (CHIP) and chronic liver disease in 214,563 individuals from 4 independent cohorts with whole-exome sequencing data (Framingham Heart Study, Atherosclerosis Risk in Communities Study, UK Biobank and Mass General Brigham Biobank). CHIP was associated with an increased risk of prevalent and incident chronic liver disease (odds ratio = 2.01, 95% confidence interval (95% CI) [1.46, 2.79]; P < 0.001). Individuals with CHIP were more likely to demonstrate liver inflammation and fibrosis detectable by magnetic resonance imaging compared to those without CHIP (odds ratio = 1.74, 95% CI [1.16, 2.60]; P = 0.007). To assess potential causality, Mendelian randomization analyses showed that genetic predisposition to CHIP was associated with a greater risk of chronic liver disease (odds ratio = 2.37, 95% CI [1.57, 3.6]; P < 0.001). In a dietary model of non-alcoholic steatohepatitis, mice transplanted with Tet2-deficient haematopoietic cells demonstrated more severe liver inflammation and fibrosis. These effects were mediated by the NLRP3 inflammasome and increased levels of expression of downstream inflammatory cytokines in Tet2-deficient macrophages. In summary, clonal haematopoiesis is associated with an elevated risk of liver inflammation and chronic liver disease progression through an aberrant inflammatory response
Chromosome Xq23 is associated with lower atherogenic lipid concentrations and favorable cardiometabolic indices
AbstractAutosomal genetic analyses of blood lipids have yielded key insights for coronary heart disease (CHD). However, X chromosome genetic variation is understudied for blood lipids in large sample sizes. We now analyze genetic and blood lipid data in a high-coverage whole X chromosome sequencing study of 65,322 multi-ancestry participants and perform replication among 456,893 European participants. Common alleles on chromosome Xq23 are strongly associated with reduced total cholesterol, LDL cholesterol, and triglycerides (min P = 8.5 × 10−72), with similar effects for males and females. Chromosome Xq23 lipid-lowering alleles are associated with reduced odds for CHD among 42,545 cases and 591,247 controls (P = 1.7 × 10−4), and reduced odds for diabetes mellitus type 2 among 54,095 cases and 573,885 controls (P = 1.4 × 10−5). Although we observe an association with increased BMI, waist-to-hip ratio adjusted for BMI is reduced, bioimpedance analyses indicate increased gluteofemoral fat, and abdominal MRI analyses indicate reduced visceral adiposity. Co-localization analyses strongly correlate increased CHRDL1 gene expression, particularly in adipose tissue, with reduced concentrations of blood lipids.Abstract
Autosomal genetic analyses of blood lipids have yielded key insights for coronary heart disease (CHD). However, X chromosome genetic variation is understudied for blood lipids in large sample sizes. We now analyze genetic and blood lipid data in a high-coverage whole X chromosome sequencing study of 65,322 multi-ancestry participants and perform replication among 456,893 European participants. Common alleles on chromosome Xq23 are strongly associated with reduced total cholesterol, LDL cholesterol, and triglycerides (min P = 8.5 × 10−72), with similar effects for males and females. Chromosome Xq23 lipid-lowering alleles are associated with reduced odds for CHD among 42,545 cases and 591,247 controls (P = 1.7 × 10−4), and reduced odds for diabetes mellitus type 2 among 54,095 cases and 573,885 controls (P = 1.4 × 10−5). Although we observe an association with increased BMI, waist-to-hip ratio adjusted for BMI is reduced, bioimpedance analyses indicate increased gluteofemoral fat, and abdominal MRI analyses indicate reduced visceral adiposity. Co-localization analyses strongly correlate increased CHRDL1 gene expression, particularly in adipose tissue, with reduced concentrations of blood lipids
A dose-response relationship between sex hormone-induced change in hepatic triglyceride lipase and high-density lipoprotein cholesterol in postmenopausal women
Re: Reversal of Relation Between Body Mass and Endogenous Estrogen Concentrations With Menopausal Status
A rapid and sensitive micro-assay for the enzymatic determination of plasma and lipoprotein cholesterol.
- …
